Artwork

תוכן מסופק על ידי BlueDot Impact. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי BlueDot Impact או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.
Player FM - אפליקציית פודקאסט
התחל במצב לא מקוון עם האפליקציה Player FM !

Low-Stakes Alignment

13:56
 
שתפו
 

סדרה בארכיון ("עדכון לא פעיל" status)

When? This feed was archived on February 21, 2025 21:08 (9M ago). Last successful fetch was on January 02, 2025 12:05 (11M ago)

Why? עדכון לא פעיל status. השרתים שלנו לא הצליחו לאחזר פודקאסט חוקי לזמן ממושך.

What now? You might be able to find a more up-to-date version using the search function. This series will no longer be checked for updates. If you believe this to be in error, please check if the publisher's feed link below is valid and contact support to request the feed be restored or if you have any other concerns about this.

Manage episode 424087978 series 3498845
תוכן מסופק על ידי BlueDot Impact. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי BlueDot Impact או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.

Right now I’m working on finding a good objective to optimize with ML, rather than trying to make sure our models are robustly optimizing that objective. (This is roughly “outer alignment.”) That’s pretty vague, and it’s not obvious whether “find a good objective” is a meaningful goal rather than being inherently confused or sweeping key distinctions under the rug. So I like to focus on a more precise special case of alignment: solve alignment when decisions are “low stakes.” I think this case effectively isolates the problem of “find a good objective” from the problem of ensuring robustness and is precise enough to focus on productively. In this post I’ll describe what I mean by the low-stakes setting, why I think it isolates this subproblem, why I want to isolate this subproblem, and why I think that it’s valuable to work on crisp subproblems.

Source:

https://www.alignmentforum.org/posts/TPan9sQFuPP6jgEJo/low-stakes-alignment

Narrated for AI Safety Fundamentals by TYPE III AUDIO.

---

A podcast by BlueDot Impact.
Learn more on the AI Safety Fundamentals website.

  continue reading

פרקים

1. Low-Stakes Alignment (00:00:00)

2. 1. What is the low-stakes setting? (00:01:07)

3. 2. Why do low stakes require only outer alignment? (00:01:49)

4. 3. Why focus on this subproblem first? (00:03:26)

5. 4. Is the low-stakes setting actually scary? (00:05:10)

6. 5. Why focus on "low stakes" rather than "outer alignment"? (00:06:09)

7. 6. More formal definition of low-stakes (00:07:23)

8. 7. More formal argument that outer alignment is sufficient (00:08:55)

9. 8. Why expect SGD to work online even for neural networks? (00:11:38)

85 פרקים

Artwork
iconשתפו
 

סדרה בארכיון ("עדכון לא פעיל" status)

When? This feed was archived on February 21, 2025 21:08 (9M ago). Last successful fetch was on January 02, 2025 12:05 (11M ago)

Why? עדכון לא פעיל status. השרתים שלנו לא הצליחו לאחזר פודקאסט חוקי לזמן ממושך.

What now? You might be able to find a more up-to-date version using the search function. This series will no longer be checked for updates. If you believe this to be in error, please check if the publisher's feed link below is valid and contact support to request the feed be restored or if you have any other concerns about this.

Manage episode 424087978 series 3498845
תוכן מסופק על ידי BlueDot Impact. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי BlueDot Impact או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.

Right now I’m working on finding a good objective to optimize with ML, rather than trying to make sure our models are robustly optimizing that objective. (This is roughly “outer alignment.”) That’s pretty vague, and it’s not obvious whether “find a good objective” is a meaningful goal rather than being inherently confused or sweeping key distinctions under the rug. So I like to focus on a more precise special case of alignment: solve alignment when decisions are “low stakes.” I think this case effectively isolates the problem of “find a good objective” from the problem of ensuring robustness and is precise enough to focus on productively. In this post I’ll describe what I mean by the low-stakes setting, why I think it isolates this subproblem, why I want to isolate this subproblem, and why I think that it’s valuable to work on crisp subproblems.

Source:

https://www.alignmentforum.org/posts/TPan9sQFuPP6jgEJo/low-stakes-alignment

Narrated for AI Safety Fundamentals by TYPE III AUDIO.

---

A podcast by BlueDot Impact.
Learn more on the AI Safety Fundamentals website.

  continue reading

פרקים

1. Low-Stakes Alignment (00:00:00)

2. 1. What is the low-stakes setting? (00:01:07)

3. 2. Why do low stakes require only outer alignment? (00:01:49)

4. 3. Why focus on this subproblem first? (00:03:26)

5. 4. Is the low-stakes setting actually scary? (00:05:10)

6. 5. Why focus on "low stakes" rather than "outer alignment"? (00:06:09)

7. 6. More formal definition of low-stakes (00:07:23)

8. 7. More formal argument that outer alignment is sufficient (00:08:55)

9. 8. Why expect SGD to work online even for neural networks? (00:11:38)

85 פרקים

כל הפרקים

×
 
Loading …

ברוכים הבאים אל Player FM!

Player FM סורק את האינטרנט עבור פודקאסטים באיכות גבוהה בשבילכם כדי שתהנו מהם כרגע. זה יישום הפודקאסט הטוב ביותר והוא עובד על אנדרואיד, iPhone ואינטרנט. הירשמו לסנכרון מנויים במכשירים שונים.

 

מדריך עזר מהיר

האזן לתוכנית הזו בזמן שאתה חוקר
הפעלה