Artwork

תוכן מסופק על ידי BlueDot Impact. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי BlueDot Impact או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.
Player FM - אפליקציית פודקאסט
התחל במצב לא מקוון עם האפליקציה Player FM !

Problems and Fundamental Limitations of Reinforcement Learning from Human Feedback

32:19
 
שתפו
 

Manage episode 429711880 series 3498845
תוכן מסופק על ידי BlueDot Impact. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי BlueDot Impact או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.

This paper explains Anthropic’s constitutional AI approach, which is largely an extension on RLHF but with AIs replacing human demonstrators and human evaluators.

Everything in this paper is relevant to this week's learning objectives, and we recommend you read it in its entirety. It summarises limitations with conventional RLHF, explains the constitutional AI approach, shows how it performs, and where future research might be directed.

If you are in a rush, focus on sections 1.2, 3.1, 3.4, 4.1, 6.1, 6.2.

A podcast by BlueDot Impact.
Learn more on the AI Safety Fundamentals website.

  continue reading

פרקים

1. Problems and Fundamental Limitations of Reinforcement Learning from Human Feedback (00:00:00)

2. Abstract (00:00:30)

3. 3 Open Problems and Limitations of RLHF (00:01:23)

4. 3.1 Challenges with Obtaining Human Feedback (00:03:17)

5. 3.1.1 Misaligned Humans: Evaluators may Pursue the Wrong Goals (00:03:38)

6. 3.1.2 Good Oversight is Difficult (00:06:51)

7. 3.1.3 Data Quality (00:11:08)

8. 3.1.4 Limitations of Feedback Types (00:12:59)

9. 3.2 Challenges with the Reward Model (00:17:03)

10. 3.2.1 Problem Misspecification (00:17:27)

11. 3.2.2 Reward Misgeneralization and Hacking (00:20:24)

12. 3.2.3 Evaluating Reward Models (00:22:30)

13. 3.3 Challenges with the Policy (00:23:49)

14. 3.3.1 Robust Reinforcement Learning is Difficul (00:24:13)

15. 3.3.2 Policy Misgeneralization (00:26:23)

16. 3.3.3 Distributional Challenges (00:27:35)

17. 3.4 Challenges with Jointly Training the Reward Model and Policy (00:29:54)

83 פרקים

Artwork
iconשתפו
 
Manage episode 429711880 series 3498845
תוכן מסופק על ידי BlueDot Impact. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי BlueDot Impact או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.

This paper explains Anthropic’s constitutional AI approach, which is largely an extension on RLHF but with AIs replacing human demonstrators and human evaluators.

Everything in this paper is relevant to this week's learning objectives, and we recommend you read it in its entirety. It summarises limitations with conventional RLHF, explains the constitutional AI approach, shows how it performs, and where future research might be directed.

If you are in a rush, focus on sections 1.2, 3.1, 3.4, 4.1, 6.1, 6.2.

A podcast by BlueDot Impact.
Learn more on the AI Safety Fundamentals website.

  continue reading

פרקים

1. Problems and Fundamental Limitations of Reinforcement Learning from Human Feedback (00:00:00)

2. Abstract (00:00:30)

3. 3 Open Problems and Limitations of RLHF (00:01:23)

4. 3.1 Challenges with Obtaining Human Feedback (00:03:17)

5. 3.1.1 Misaligned Humans: Evaluators may Pursue the Wrong Goals (00:03:38)

6. 3.1.2 Good Oversight is Difficult (00:06:51)

7. 3.1.3 Data Quality (00:11:08)

8. 3.1.4 Limitations of Feedback Types (00:12:59)

9. 3.2 Challenges with the Reward Model (00:17:03)

10. 3.2.1 Problem Misspecification (00:17:27)

11. 3.2.2 Reward Misgeneralization and Hacking (00:20:24)

12. 3.2.3 Evaluating Reward Models (00:22:30)

13. 3.3 Challenges with the Policy (00:23:49)

14. 3.3.1 Robust Reinforcement Learning is Difficul (00:24:13)

15. 3.3.2 Policy Misgeneralization (00:26:23)

16. 3.3.3 Distributional Challenges (00:27:35)

17. 3.4 Challenges with Jointly Training the Reward Model and Policy (00:29:54)

83 פרקים

כל הפרקים

×
 
Loading …

ברוכים הבאים אל Player FM!

Player FM סורק את האינטרנט עבור פודקאסטים באיכות גבוהה בשבילכם כדי שתהנו מהם כרגע. זה יישום הפודקאסט הטוב ביותר והוא עובד על אנדרואיד, iPhone ואינטרנט. הירשמו לסנכרון מנויים במכשירים שונים.

 

מדריך עזר מהיר