Progress on Causal Influence Diagrams
סדרה בארכיון ("עדכון לא פעיל" status)
When? This feed was archived on February 21, 2025 21:08 (). Last successful fetch was on January 02, 2025 12:05 ()
Why? עדכון לא פעיל status. השרתים שלנו לא הצליחו לאחזר פודקאסט חוקי לזמן ממושך.
What now? You might be able to find a more up-to-date version using the search function. This series will no longer be checked for updates. If you believe this to be in error, please check if the publisher's feed link below is valid and contact support to request the feed be restored or if you have any other concerns about this.
Manage episode 424744827 series 3498845
By Tom Everitt, Ryan Carey, Lewis Hammond, James Fox, Eric Langlois, and Shane Legg
About 2 years ago, we released the first few papers on understanding agent incentives using causal influence diagrams. This blog post will summarize progress made since then. What are causal influence diagrams? A key problem in AI alignment is understanding agent incentives. Concerns have been raised that agents may be incentivized to avoid correction, manipulate users, or inappropriately influence their learning. This is particularly worrying as training schemes often shape incentives in subtle and surprising ways. For these reasons, we’re developing a formal theory of incentives based on causal influence diagrams (CIDs).
Source:
https://deepmindsafetyresearch.medium.com/progress-on-causal-influence-diagrams-a7a32180b0d1
Narrated for AI Safety Fundamentals by TYPE III AUDIO.
---
A podcast by BlueDot Impact.
Learn more on the AI Safety Fundamentals website.
85 פרקים