Artwork

תוכן מסופק על ידי DataQubi. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי DataQubi או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.
Player FM - אפליקציית פודקאסט
התחל במצב לא מקוון עם האפליקציה Player FM !

Structuring AI Output for Enterprise Reliability

15:19
 
שתפו
 

Manage episode 510914071 series 3656088
תוכן מסופק על ידי DataQubi. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי DataQubi או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.

Send us a text

Why do brilliant AI demos often fail in production? Because unstructured outputs erode trust and hinder scalability.

This podcast explores Behavior Design in AI—the essential 2025 practice dedicated to engineering Large Language Models (LLMs) to deliver consistent, goal-aligned behaviors rather than erratic results.

We argue that AI isn't just about intelligence; it's about predictable intelligence.

Humans trust consistency—think standardized bank statements or medical prescriptions. For LLMs to move from prototypes to crucial enterprise deployment, they must deliver structured, repeatable results. The foundational insight is clear: Structure = Trust. Predictable output is the necessary bridge from demo to enterprise-wide adoption.

In this overview, we detail the core techniques required for high-stakes reliability:
Behavioral Alignment: Learn how to embed persistent rules—such as "Always respond in JSON"—using system prompts. This ensures invariant rules always reach the LLM, minimizing format drift.
Consistency Over Creativity: Understand why enterprise tasks (like summaries or audits) require prioritizing low-temperature settings (0.1–0.3) to guarantee factual, repeatable results, reserving higher temperatures for pure ideation.
Workflow Integration: Master JSON Enforcement by specifying schemas (via PydDict or TypedDict) in your prompts. This crucial technique eliminates parsing errors and enables chaining, successfully transforming chaotic free-text enterprise data (like e-commerce issue tracking) into workflow-ready, parseable inputs.
If you are an AI practitioner or enterprise developer seeking to make LLMs a reliable, scalable component of your operations, understanding output structure is now a core production skill.
Support the show

Thank you for tuning in to "Analyze Happy: Crafting Your Data Estate"!
We hope you enjoyed today’s deep dive. If you found this episode helpful, don’t forget to subscribe for more insights on building modern data estates with Microsoft technologies like Fabric, Azure Databricks, and Power Platform.

Connect with Us:

  • Have a question or topic you’d like us to cover? Reach out on linkedin.com/company/dataqubi or [email protected]
  • Visit our website at www.dataqubi.com or episode resources, show notes, and additional tips on data governance, AI transformation, and best practices.

Stay Ahead:
Check out the Microsoft Learn portal for free training on Azure IoT, Fabric, and more, or explore the Azure Databricks community for the latest updates. Let’s keep crafting data solutions that fit your organization’s culture and tech landscape—happy analyzing until next time!

  continue reading

32 פרקים

Artwork
iconשתפו
 
Manage episode 510914071 series 3656088
תוכן מסופק על ידי DataQubi. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי DataQubi או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.

Send us a text

Why do brilliant AI demos often fail in production? Because unstructured outputs erode trust and hinder scalability.

This podcast explores Behavior Design in AI—the essential 2025 practice dedicated to engineering Large Language Models (LLMs) to deliver consistent, goal-aligned behaviors rather than erratic results.

We argue that AI isn't just about intelligence; it's about predictable intelligence.

Humans trust consistency—think standardized bank statements or medical prescriptions. For LLMs to move from prototypes to crucial enterprise deployment, they must deliver structured, repeatable results. The foundational insight is clear: Structure = Trust. Predictable output is the necessary bridge from demo to enterprise-wide adoption.

In this overview, we detail the core techniques required for high-stakes reliability:
Behavioral Alignment: Learn how to embed persistent rules—such as "Always respond in JSON"—using system prompts. This ensures invariant rules always reach the LLM, minimizing format drift.
Consistency Over Creativity: Understand why enterprise tasks (like summaries or audits) require prioritizing low-temperature settings (0.1–0.3) to guarantee factual, repeatable results, reserving higher temperatures for pure ideation.
Workflow Integration: Master JSON Enforcement by specifying schemas (via PydDict or TypedDict) in your prompts. This crucial technique eliminates parsing errors and enables chaining, successfully transforming chaotic free-text enterprise data (like e-commerce issue tracking) into workflow-ready, parseable inputs.
If you are an AI practitioner or enterprise developer seeking to make LLMs a reliable, scalable component of your operations, understanding output structure is now a core production skill.
Support the show

Thank you for tuning in to "Analyze Happy: Crafting Your Data Estate"!
We hope you enjoyed today’s deep dive. If you found this episode helpful, don’t forget to subscribe for more insights on building modern data estates with Microsoft technologies like Fabric, Azure Databricks, and Power Platform.

Connect with Us:

  • Have a question or topic you’d like us to cover? Reach out on linkedin.com/company/dataqubi or [email protected]
  • Visit our website at www.dataqubi.com or episode resources, show notes, and additional tips on data governance, AI transformation, and best practices.

Stay Ahead:
Check out the Microsoft Learn portal for free training on Azure IoT, Fabric, and more, or explore the Azure Databricks community for the latest updates. Let’s keep crafting data solutions that fit your organization’s culture and tech landscape—happy analyzing until next time!

  continue reading

32 פרקים

כל הפרקים

×
 
Loading …

ברוכים הבאים אל Player FM!

Player FM סורק את האינטרנט עבור פודקאסטים באיכות גבוהה בשבילכם כדי שתהנו מהם כרגע. זה יישום הפודקאסט הטוב ביותר והוא עובד על אנדרואיד, iPhone ואינטרנט. הירשמו לסנכרון מנויים במכשירים שונים.

 

מדריך עזר מהיר

האזן לתוכנית הזו בזמן שאתה חוקר
הפעלה