Artwork

תוכן מסופק על ידי jmhreif. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי jmhreif או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.
Player FM - אפליקציית פודקאסט
התחל במצב לא מקוון עם האפליקציה Player FM !

Ep54: Spring AI Integrations + Real-World RAG Challenges

13:10
 
שתפו
 

Manage episode 503206916 series 3579839
תוכן מסופק על ידי jmhreif. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי jmhreif או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.

Hear my latest hands-on experiences and lessons learned from the world of AI, graph databases, and developer tooling.

What’s Inside:

  • The difference between sparse and dense vectors, and how Neo4j handles them in real-world scenarios.
  • First impressions and practical tips on integrating Spring AI MCP with Neo4j’s MCP servers—including what worked, what didn’t, and how to piece together documentation from multiple sources.
  • Working with Pinecone and Neo4j for vector RAG (Retrieval-Augmented Generation) and graph RAG, plus the challenges of mapping results back to Java entities.
  • Reflections on the limitations of keyword search versus the power of contextual, conversational AI queries—using a book recommendation system demo.
  • Highlights from the article “Your RAG Pipeline is Lying with Confidence—Here’s How I Gave It a Brain with Neo4j”, including strategies for smarter chunking, avoiding semantic drift, and improving retrieval accuracy.

Links & Resources:

Thanks for listening! If you enjoyed this episode, please subscribe, share, and leave a review. Happy coding!

  continue reading

55 פרקים

Artwork
iconשתפו
 
Manage episode 503206916 series 3579839
תוכן מסופק על ידי jmhreif. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי jmhreif או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.

Hear my latest hands-on experiences and lessons learned from the world of AI, graph databases, and developer tooling.

What’s Inside:

  • The difference between sparse and dense vectors, and how Neo4j handles them in real-world scenarios.
  • First impressions and practical tips on integrating Spring AI MCP with Neo4j’s MCP servers—including what worked, what didn’t, and how to piece together documentation from multiple sources.
  • Working with Pinecone and Neo4j for vector RAG (Retrieval-Augmented Generation) and graph RAG, plus the challenges of mapping results back to Java entities.
  • Reflections on the limitations of keyword search versus the power of contextual, conversational AI queries—using a book recommendation system demo.
  • Highlights from the article “Your RAG Pipeline is Lying with Confidence—Here’s How I Gave It a Brain with Neo4j”, including strategies for smarter chunking, avoiding semantic drift, and improving retrieval accuracy.

Links & Resources:

Thanks for listening! If you enjoyed this episode, please subscribe, share, and leave a review. Happy coding!

  continue reading

55 פרקים

כל הפרקים

×
 
Loading …

ברוכים הבאים אל Player FM!

Player FM סורק את האינטרנט עבור פודקאסטים באיכות גבוהה בשבילכם כדי שתהנו מהם כרגע. זה יישום הפודקאסט הטוב ביותר והוא עובד על אנדרואיד, iPhone ואינטרנט. הירשמו לסנכרון מנויים במכשירים שונים.

 

מדריך עזר מהיר

האזן לתוכנית הזו בזמן שאתה חוקר
הפעלה