Artwork

תוכן מסופק על ידי Anton Chuvakin. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Anton Chuvakin או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.
Player FM - אפליקציית פודקאסט
התחל במצב לא מקוון עם האפליקציה Player FM !

EP241 From Black Box to Building Blocks: More Modern Detection Engineering Lessons from Google

31:33
 
שתפו
 

Manage episode 503751053 series 2892548
תוכן מסופק על ידי Anton Chuvakin. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Anton Chuvakin או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.

Guest:

Topics:

  • On the 3rd anniversary of Curated Detections, you've grown from 70 rules to over 4700. Can you walk us through that journey? What were some of the key inflection points and what have been the biggest lessons learned in scaling a detection portfolio so massively?
  • Historically the SecOps Curated Detection content was opaque, which led to, understandably, a bit of customer friction. We’ve recently made nearly all of that content transparent and editable by users. What were the challenges in that transition?
  • You make a distinction between "Detection-as-Code" and a more mature "Software Engineering" paradigm. What gets better for a security team when they move beyond just version control and a CI/CD pipeline and start incorporating things like unit testing, readability reviews, and performance testing for their detections?
  • The idea of a "Goldilocks Zone" for detections is intriguing – not too many, not too few. How do you find that balance, and what are the metrics that matter when measuring the effectiveness of a detection program? You mentioned customer feedback is important, but a confusion matrix isn't possible, why is that?
  • You talk about enabling customers to use your "building blocks" to create their own detections. Can you give us a practical example of how a customer might use a building block for something like detecting VPN and Tor traffic to augment their security?
  • You have started using LLMs for reviewing the explainability of human-generated metadata. Can you expand on that? What have you found are the ripe areas for AI in detection engineering, and can you share any anecdotes of where AI has succeeded and where it has failed?

Resources

  continue reading

247 פרקים

Artwork
iconשתפו
 
Manage episode 503751053 series 2892548
תוכן מסופק על ידי Anton Chuvakin. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Anton Chuvakin או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.

Guest:

Topics:

  • On the 3rd anniversary of Curated Detections, you've grown from 70 rules to over 4700. Can you walk us through that journey? What were some of the key inflection points and what have been the biggest lessons learned in scaling a detection portfolio so massively?
  • Historically the SecOps Curated Detection content was opaque, which led to, understandably, a bit of customer friction. We’ve recently made nearly all of that content transparent and editable by users. What were the challenges in that transition?
  • You make a distinction between "Detection-as-Code" and a more mature "Software Engineering" paradigm. What gets better for a security team when they move beyond just version control and a CI/CD pipeline and start incorporating things like unit testing, readability reviews, and performance testing for their detections?
  • The idea of a "Goldilocks Zone" for detections is intriguing – not too many, not too few. How do you find that balance, and what are the metrics that matter when measuring the effectiveness of a detection program? You mentioned customer feedback is important, but a confusion matrix isn't possible, why is that?
  • You talk about enabling customers to use your "building blocks" to create their own detections. Can you give us a practical example of how a customer might use a building block for something like detecting VPN and Tor traffic to augment their security?
  • You have started using LLMs for reviewing the explainability of human-generated metadata. Can you expand on that? What have you found are the ripe areas for AI in detection engineering, and can you share any anecdotes of where AI has succeeded and where it has failed?

Resources

  continue reading

247 פרקים

כל הפרקים

×
 
Loading …

ברוכים הבאים אל Player FM!

Player FM סורק את האינטרנט עבור פודקאסטים באיכות גבוהה בשבילכם כדי שתהנו מהם כרגע. זה יישום הפודקאסט הטוב ביותר והוא עובד על אנדרואיד, iPhone ואינטרנט. הירשמו לסנכרון מנויים במכשירים שונים.

 

מדריך עזר מהיר

האזן לתוכנית הזו בזמן שאתה חוקר
הפעלה