Artwork

תוכן מסופק על ידי Felipe Flores. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Felipe Flores או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.
Player FM - אפליקציית פודקאסט
התחל במצב לא מקוון עם האפליקציה Player FM !

#198 Building Sophistication Into ML Ops Starts With The Strategic Vision, with Mia O’Dell, the GM of Data Science at Sportsbet

38:42
 
שתפו
 

Manage episode 334871135 series 2310475
תוכן מסופק על ידי Felipe Flores. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Felipe Flores או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.

Online wagering is one of the most sophisticated and complex fields for data and analytics. This week on the Data Futurology podcast, Mia O’Dell, the GM of Data Science at Sportsbet, kicks thing off by explaining how the company brings together three separate data teams, across three lines of business, to achieve meaningful and collaborative data outcomes.

Sportsbet is also growing its data practice and looking to nearly double its team sizes by the end of the year. O’Dell – who was also responsible for scaling the data practice in a previous organisation – also shares some insights about how to approach data scaling. There’s no “one size fits all” approach, she says. Success depends on being able to work with the teams to come up with a strong and compelling vision.

Finally, O’Dell also shares her concept of “machine learning offense” and “machine learning defence” as a way to help articulate the value of ML Ops at a time where non-data executives within enterprises are still struggling to understand the breakdown and operation of ML Ops teams.

It’s also important to understand where and when ML Ops becomes important to a business, O’Dell adds, saying that a lot of organisations make the mistake of going all-out when they’re just at the start of the journey, where the value of ML Ops will be marginal and difficult to articulate.

“If your first machine learning model is something that’s extremely critical to the success of the business, of course you want to over invest in its reliance,” she says. “But for something that isn’t necessarily core to the business, ML Ops can result in putting far too much effort on the defensive side, and not enough yet on the offensive side.”

Tune in for in-depth insights into this, and more, with Mia O’Dell.

Enjoy the show!

Thank you to you our sponsor, Talent Insights Group!

Join us for one of our upcoming events: https://www.datafuturology.com/events

Join our Slack Community: https://hubs.li/Q01gKNBn0

Read the full podcast episode summary here.

  continue reading

268 פרקים

Artwork
iconשתפו
 
Manage episode 334871135 series 2310475
תוכן מסופק על ידי Felipe Flores. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Felipe Flores או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.

Online wagering is one of the most sophisticated and complex fields for data and analytics. This week on the Data Futurology podcast, Mia O’Dell, the GM of Data Science at Sportsbet, kicks thing off by explaining how the company brings together three separate data teams, across three lines of business, to achieve meaningful and collaborative data outcomes.

Sportsbet is also growing its data practice and looking to nearly double its team sizes by the end of the year. O’Dell – who was also responsible for scaling the data practice in a previous organisation – also shares some insights about how to approach data scaling. There’s no “one size fits all” approach, she says. Success depends on being able to work with the teams to come up with a strong and compelling vision.

Finally, O’Dell also shares her concept of “machine learning offense” and “machine learning defence” as a way to help articulate the value of ML Ops at a time where non-data executives within enterprises are still struggling to understand the breakdown and operation of ML Ops teams.

It’s also important to understand where and when ML Ops becomes important to a business, O’Dell adds, saying that a lot of organisations make the mistake of going all-out when they’re just at the start of the journey, where the value of ML Ops will be marginal and difficult to articulate.

“If your first machine learning model is something that’s extremely critical to the success of the business, of course you want to over invest in its reliance,” she says. “But for something that isn’t necessarily core to the business, ML Ops can result in putting far too much effort on the defensive side, and not enough yet on the offensive side.”

Tune in for in-depth insights into this, and more, with Mia O’Dell.

Enjoy the show!

Thank you to you our sponsor, Talent Insights Group!

Join us for one of our upcoming events: https://www.datafuturology.com/events

Join our Slack Community: https://hubs.li/Q01gKNBn0

Read the full podcast episode summary here.

  continue reading

268 פרקים

Toate episoadele

×
 
Loading …

ברוכים הבאים אל Player FM!

Player FM סורק את האינטרנט עבור פודקאסטים באיכות גבוהה בשבילכם כדי שתהנו מהם כרגע. זה יישום הפודקאסט הטוב ביותר והוא עובד על אנדרואיד, iPhone ואינטרנט. הירשמו לסנכרון מנויים במכשירים שונים.

 

מדריך עזר מהיר

האזן לתוכנית הזו בזמן שאתה חוקר
הפעלה