

When? This feed was archived on February 10, 2025 12:10 (
Why? עדכון לא פעיל status. השרתים שלנו לא הצליחו לאחזר פודקאסט חוקי לזמן ממושך.
What now? You might be able to find a more up-to-date version using the search function. This series will no longer be checked for updates. If you believe this to be in error, please check if the publisher's feed link below is valid and contact support to request the feed be restored or if you have any other concerns about this.
In this episode, Eugene Uwiragiye dives into the intricacies of decision trees and related algorithms in machine learning, including ID3, C4.5, and Random Forests. He explains key concepts such as information gain, Gini index, and the importance of feature selection. Eugene also emphasizes how to handle data, particularly continuous and categorical data, and explores techniques like pruning to avoid overfitting. Whether you're a beginner or an experienced machine learning enthusiast, this episode offers valuable insights into decision tree models and their real-world applications.
Key Topics Covered:
Memorable Quotes:
Recommended Resources:
Call to Action:
If you enjoyed this episode and want to learn more about decision trees and machine learning algorithms, don't forget to subscribe and leave a review! Also, check out our related episodes on ensemble learning and handling imbalanced datasets in machine learning.
20 פרקים
When?
This feed was archived on February 10, 2025 12:10 (
Why? עדכון לא פעיל status. השרתים שלנו לא הצליחו לאחזר פודקאסט חוקי לזמן ממושך.
What now? You might be able to find a more up-to-date version using the search function. This series will no longer be checked for updates. If you believe this to be in error, please check if the publisher's feed link below is valid and contact support to request the feed be restored or if you have any other concerns about this.
In this episode, Eugene Uwiragiye dives into the intricacies of decision trees and related algorithms in machine learning, including ID3, C4.5, and Random Forests. He explains key concepts such as information gain, Gini index, and the importance of feature selection. Eugene also emphasizes how to handle data, particularly continuous and categorical data, and explores techniques like pruning to avoid overfitting. Whether you're a beginner or an experienced machine learning enthusiast, this episode offers valuable insights into decision tree models and their real-world applications.
Key Topics Covered:
Memorable Quotes:
Recommended Resources:
Call to Action:
If you enjoyed this episode and want to learn more about decision trees and machine learning algorithms, don't forget to subscribe and leave a review! Also, check out our related episodes on ensemble learning and handling imbalanced datasets in machine learning.
20 פרקים
Player FM סורק את האינטרנט עבור פודקאסטים באיכות גבוהה בשבילכם כדי שתהנו מהם כרגע. זה יישום הפודקאסט הטוב ביותר והוא עובד על אנדרואיד, iPhone ואינטרנט. הירשמו לסנכרון מנויים במכשירים שונים.