Artwork

תוכן מסופק על ידי Brian T. O’Neill from Designing for Analytics. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Brian T. O’Neill from Designing for Analytics או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.
Player FM - אפליקציית פודקאסט
התחל במצב לא מקוון עם האפליקציה Player FM !

180- From Data Professional to Data Product Manager: Mindset Shifts To Make

45:25
 
שתפו
 

Manage episode 513590043 series 2527129
תוכן מסופק על ידי Brian T. O’Neill from Designing for Analytics. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Brian T. O’Neill from Designing for Analytics או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.

In this episode, I’m exploring the mindset shift data professionals need to make when moving into analytics and AI data product management. From how to ask the right questions to designing for meaningful adoption, I share four key ways to think more like a product manager, and less like a deliverables machine, so your data products earn applause instead of a shoulder shrug.
Highlights/ Skip to:

  • Why shift to analytics and AI data product management (00:34)
  • From accuracy to impact and redefining success with AI and analytical data products (01:59)
  • Key Idea 1: Moving from question asker (analyst) to problem seeker (product) (04:31)
  • Key Idea 2: Designing change management into solutions; planning for adoption starts in the design phase (12:52)
  • Key Idea 3: Creating tools so useful people can’t imagine working without them. (26:23)
  • Key Idea 4: Solving for unarticulated needs vs. active needs (34:24)
Quotes from Today’s Episode

“Too many analytics teams are rewarded for accuracy instead of impact. Analysts give answers, and product people ask questions.The shift from analytics to product thinking isn’t about tools or frameworks, it’s about curiosity.It’s moving from ‘here’s what the data says’ to ‘what problem are we actually trying to solve, and for whom?’That’s where the real leverage is, in asking better questions, not just delivering faster answers.”

“We often mistake usage for success.Adoption only matters if it’s meaningful adoption. A dashboard getting opened a hundred times doesn’t mean it’s valuable... it might just mean people can’t find what they need.Real success is when your users say, ‘I can’t imagine doing my job without this.’That’s the level of usefulness we should be designing for.”

“The most valuable insights aren’t always the ones people ask for.
Solving active problems is good, it’s necessary. But the big unlock happens when you start surfacing and solving latent problems, the ones people don’t think to ask for.Those are the moments when users say, ‘Oh wow, that changes everything.’That’s how data teams evolve from service providers to strategic partners.”

“Here’s a simple but powerful shift for data teams: know who your real customer is.
Most data teams think their customer is the stakeholder who requested the work…
But the real customer is the end user whose life or decision should get better because of it.
When you start designing for that person, not just the requester, everything changes: your priorities, your design, even what you choose to measure.”

Links
  continue reading

114 פרקים

Artwork
iconשתפו
 
Manage episode 513590043 series 2527129
תוכן מסופק על ידי Brian T. O’Neill from Designing for Analytics. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Brian T. O’Neill from Designing for Analytics או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.

In this episode, I’m exploring the mindset shift data professionals need to make when moving into analytics and AI data product management. From how to ask the right questions to designing for meaningful adoption, I share four key ways to think more like a product manager, and less like a deliverables machine, so your data products earn applause instead of a shoulder shrug.
Highlights/ Skip to:

  • Why shift to analytics and AI data product management (00:34)
  • From accuracy to impact and redefining success with AI and analytical data products (01:59)
  • Key Idea 1: Moving from question asker (analyst) to problem seeker (product) (04:31)
  • Key Idea 2: Designing change management into solutions; planning for adoption starts in the design phase (12:52)
  • Key Idea 3: Creating tools so useful people can’t imagine working without them. (26:23)
  • Key Idea 4: Solving for unarticulated needs vs. active needs (34:24)
Quotes from Today’s Episode

“Too many analytics teams are rewarded for accuracy instead of impact. Analysts give answers, and product people ask questions.The shift from analytics to product thinking isn’t about tools or frameworks, it’s about curiosity.It’s moving from ‘here’s what the data says’ to ‘what problem are we actually trying to solve, and for whom?’That’s where the real leverage is, in asking better questions, not just delivering faster answers.”

“We often mistake usage for success.Adoption only matters if it’s meaningful adoption. A dashboard getting opened a hundred times doesn’t mean it’s valuable... it might just mean people can’t find what they need.Real success is when your users say, ‘I can’t imagine doing my job without this.’That’s the level of usefulness we should be designing for.”

“The most valuable insights aren’t always the ones people ask for.
Solving active problems is good, it’s necessary. But the big unlock happens when you start surfacing and solving latent problems, the ones people don’t think to ask for.Those are the moments when users say, ‘Oh wow, that changes everything.’That’s how data teams evolve from service providers to strategic partners.”

“Here’s a simple but powerful shift for data teams: know who your real customer is.
Most data teams think their customer is the stakeholder who requested the work…
But the real customer is the end user whose life or decision should get better because of it.
When you start designing for that person, not just the requester, everything changes: your priorities, your design, even what you choose to measure.”

Links
  continue reading

114 פרקים

כל הפרקים

×
 
Loading …

ברוכים הבאים אל Player FM!

Player FM סורק את האינטרנט עבור פודקאסטים באיכות גבוהה בשבילכם כדי שתהנו מהם כרגע. זה יישום הפודקאסט הטוב ביותר והוא עובד על אנדרואיד, iPhone ואינטרנט. הירשמו לסנכרון מנויים במכשירים שונים.

 

מדריך עזר מהיר

האזן לתוכנית הזו בזמן שאתה חוקר
הפעלה