16 subscribers
התחל במצב לא מקוון עם האפליקציה Player FM !
פודקאסטים ששווה להאזין
בחסות


1 Ep. 42 - RevPar Problems, Real Talk: When Memes meet Metrics with Calvin Tilokee 47:59
Experiencing Data w/ Brian T. O’Neill (UX for AI Data Products, SAAS Analytics, Data Product Management)
«
»
092 - How to measure data product value from a UX and business lens (and how not to do it)
Manage episode 331280545 series 2527129
Today I’m talking about how to measure data product value from a user experience and business lens, and where leaders sometimes get it wrong. Today’s first question was asked at my recent talk at the Data Summit conference where an attendee asked how UX design fits into agile data product development. Additionally, I recently had a subscriber to my Insights mailing list ask about how to measure adoption, utilization, and satisfaction of data products. So, we’ll jump into that juicy topic as well.
Answering these inquiries also got me on a related tangent about the UX challenges associated with abstracting your platform to support multiple, but often theoretical, user needs—and the importance of collaboration to ensure your whole team is operating from the same set of assumptions or definitions about success. I conclude the episode with the concept of “game framing” as a way to conceptualize these ideas at a high level.
Key topics and cues in this episode include:
- An overview of the questions I received (:45)
- Measuring change once you’ve established a benchmark (7:45)
- The challenges of working in abstractions (abstracting your platform to facilitate theoretical future user needs) (10:48)
- The value of having shared definitions and understanding the needs of different stakeholders/users/customers (14:36)
- The importance of starting from the “last mile” (19:59)
- The difference between success metrics and progress metrics (24:31)
- How measuring feelings can be critical to measuring success (29:27)
- “Game framing” as a way to understand tracking progress and success (31:22)
- “Once you’ve got your benchmark in place for a data product, it’s going to be much easier to measure what the change is because you’ll know where you’re starting from.” - Brian (7:45)
- “When you’re deploying technology that’s supposed to improve people’s lives so that you can get some promise of business value downstream, this is not a generic exercise. You have to go out and do the work to understand the status quo and what the pain is right now from the user's perspective.” - Brian (8:46)
- “That user perspective—perception even—is all that matters if you want to get to business value. The user experience is the perceived quality, usability, and utility of the data product.” - Brian (13:07)
- “A data product leader’s job should be to own the problem and not just the delivery of data product features, applications or technology outputs. ” - Brian (26:13)
- “What are we keeping score of? Different stakeholders are playing different games so it’s really important for the data product team not to impose their scoring system (definition of success) onto the customers, or the users, or the stakeholders.” - Brian (32:05)
- “We always want to abstract once we have a really good understanding of what people do, as it’s easier to create more user-centered abstractions that will actually answer real data questions later on. ” - Brian (33:34)
- https://designingforanalytics.com/community
113 פרקים
Manage episode 331280545 series 2527129
Today I’m talking about how to measure data product value from a user experience and business lens, and where leaders sometimes get it wrong. Today’s first question was asked at my recent talk at the Data Summit conference where an attendee asked how UX design fits into agile data product development. Additionally, I recently had a subscriber to my Insights mailing list ask about how to measure adoption, utilization, and satisfaction of data products. So, we’ll jump into that juicy topic as well.
Answering these inquiries also got me on a related tangent about the UX challenges associated with abstracting your platform to support multiple, but often theoretical, user needs—and the importance of collaboration to ensure your whole team is operating from the same set of assumptions or definitions about success. I conclude the episode with the concept of “game framing” as a way to conceptualize these ideas at a high level.
Key topics and cues in this episode include:
- An overview of the questions I received (:45)
- Measuring change once you’ve established a benchmark (7:45)
- The challenges of working in abstractions (abstracting your platform to facilitate theoretical future user needs) (10:48)
- The value of having shared definitions and understanding the needs of different stakeholders/users/customers (14:36)
- The importance of starting from the “last mile” (19:59)
- The difference between success metrics and progress metrics (24:31)
- How measuring feelings can be critical to measuring success (29:27)
- “Game framing” as a way to understand tracking progress and success (31:22)
- “Once you’ve got your benchmark in place for a data product, it’s going to be much easier to measure what the change is because you’ll know where you’re starting from.” - Brian (7:45)
- “When you’re deploying technology that’s supposed to improve people’s lives so that you can get some promise of business value downstream, this is not a generic exercise. You have to go out and do the work to understand the status quo and what the pain is right now from the user's perspective.” - Brian (8:46)
- “That user perspective—perception even—is all that matters if you want to get to business value. The user experience is the perceived quality, usability, and utility of the data product.” - Brian (13:07)
- “A data product leader’s job should be to own the problem and not just the delivery of data product features, applications or technology outputs. ” - Brian (26:13)
- “What are we keeping score of? Different stakeholders are playing different games so it’s really important for the data product team not to impose their scoring system (definition of success) onto the customers, or the users, or the stakeholders.” - Brian (32:05)
- “We always want to abstract once we have a really good understanding of what people do, as it’s easier to create more user-centered abstractions that will actually answer real data questions later on. ” - Brian (33:34)
- https://designingforanalytics.com/community
113 פרקים
כל הפרקים
×
1 173 - Pendo’s CEO on Monetizing an Analytics SAAS Product, Avoiding Dashboard Fatigue, and How AI is Changing Product Work 43:49

1 172 - Building AI Assistants, Not Autopilots: What Tony Zhang’s Research Shows About Automation Blindness 44:24

1 171 - Who Can Succeed in a Data or AI Product Management Role? 50:04

1 170 - Turning Data into Impactful AI Products at Experian: Lessons from North American Chief AI Officer Shri Santhnam (Promoted Episode) 42:33

1 169 - AI Product Management and UX: What’s New (If Anything) About Making Valuable LLM-Powered Products with Stuart Winter-Tear 1:01:05

1 168 - 10 Challenges Internal Data Teams May Face Building Their First Revenue-Generating Data Product 38:24

1 167 - AI Product Management and Design: How Natalia Andreyeva and Team at Infor Nexus Create B2B Data Products that Customers Value 37:34

1 166 - Can UX Quality Metrics Increase Your Data Product's Business Value and Adoption? 26:12

1 165 - How to Accommodate Multiple User Types and Needs in B2B Analytics and AI Products When You Lack UX Resources 49:04

1 164 - The Hidden UX Taxes that AI and LLM Features Impose on B2B Customers Without Your Knowledge 45:25

1 163 - It’s Not a Math Problem: How to Quantify the Value of Your Enterprise Data Products or Your Data Product Management Function 41:41

1 162 - Beyond UI: Designing User Experiences for LLM and GenAI-Based Products 42:07

1 161 - Designing and Selling Enterprise AI Products [Worth Paying For] 34:00

1 160 - Leading Product Through a Merger/Acquisition: Lessons from The Predictive Index’s CPO Adam Berke 42:10

1 159 - Uncorking Customer Insights: How Data Products Revealed Hidden Gems in Liquor & Hospitality Retail 40:47

1 158 - From Resistance to Reliance: Designing Data Products for Non-Believers with Anna Jacobson of Operator Collective 43:41

1 157 - How this materials science SAAS company brings PM+UX+data science together to help materials scientists accelerate R&D 34:58

1 156-The Challenges of Bringing UX Design and Data Science Together to Make Successful Pharma Data Products with Jeremy Forman 41:37

1 155 - Understanding Human Engagement Risk When Designing AI and GenAI User Experiences 55:33

1 154 - 10 Things Founders of B2B SAAS Analytics and AI Startups Get Wrong About DIY Product and UI/UX Design 44:47

1 153 - What Impressed Me About How John Felushko Does Product and UX at the Analytics SAAS Company, LabStats 57:31

1 152 - 10 Reasons Not to Get Professional UX Design Help for Your Enterprise AI or SAAS Analytics Product 53:00

1 151 - Monetizing SAAS Analytics and The Challenges of Designing a Successful Embedded BI Product (Promoted Episode) 49:57

1 150 - How Specialized LLMs Can Help Enterprises Deliver Better GenAI User Experiences with Mark Ramsey 52:22

1 149 - What the Data Says About Why So Many Data Science and AI Initiatives Are Still Failing to Produce Value with Evan Shellshear 50:18

1 148 - UI/UX Design Considerations for LLMs in Enterprise Applications (Part 2) 26:36

1 147 - UI/UX Design Considerations for LLMs in Enterprise Applications (Part 1) 25:46

1 146 - (Rebroadcast) Beyond Data Science - Why Human-Centered AI Needs Design with Ben Shneiderman 42:07

1 145 - Data Product Success: Adopting a Customer-Centric Approach With Malcolm Hawker, Head of Data Management at Profisee 53:09

1 144 - The Data Product Debate: Essential Tech or Excessive Effort? with Shashank Garg, CEO of Infocepts (Promoted Episode) 52:38

1 143 - The (5) Top Reasons AI/ML and Analytics SAAS Product Leaders Come to Me For UI/UX Design Help 50:01

1 142 - Live Webinar Recording: My UI/UX Design Audit of a New Podcast Analytics Service w/ Chris Hill (CEO, Humblepod) 50:56

1 141 - How They’re Adopting a Producty Approach to Data Products at RBC with Duncan Milne 43:49

1 140 - Why Data Visualization Alone Doesn’t Fix UI/UX Design Problems in Analytical Data Products with T from Data Rocks NZ 42:44

1 139 - Monetizing SAAS Analytics and The Challenges of Designing a Successful Embedded BI Product (Promoted Episode) 51:02

1 138 - VC Spotlight: The Impact of AI on SAAS and Data/Developer Products in 2024 w/ Ellen Chisa of BoldStart Ventures 33:05

1 137 - Immature Data, Immature Clients: When Are Data Products the Right Approach? feat. Data Product Architect, Karen Meppen 44:50

1 136 - Navigating the Politics of UX Research and Data Product Design with Caroline Zimmerman 44:16

1 135 - “No Time for That:” Enabling Effective Data Product UX Research in Product-Immature Organizations 52:47

1 134 - What Sanjeev Mohan Learned Co-Authoring “Data Products for Dummies” 46:52


1 132 - Leveraging Behavioral Science to Increase Data Product Adoption with Klara Lindner 42:56

1 131 - 15 Ways to Increase User Adoption of Data Products (Without Handcuffs, Threats and Mandates) with Brian T. O’Neill 36:57

1 130 - Nick Zervoudis on Data Product Management, UX Design Training and Overcoming Imposter Syndrome 48:56

1 129 - Why We Stopped, Deleted 18 Months of ML Work, and Shifted to a Data Product Mindset at Coolblue 35:21
ברוכים הבאים אל Player FM!
Player FM סורק את האינטרנט עבור פודקאסטים באיכות גבוהה בשבילכם כדי שתהנו מהם כרגע. זה יישום הפודקאסט הטוב ביותר והוא עובד על אנדרואיד, iPhone ואינטרנט. הירשמו לסנכרון מנויים במכשירים שונים.