19 subscribers
התחל במצב לא מקוון עם האפליקציה Player FM !
Experiencing Data w/ Brian T. O’Neill (UX for AI Data Products, SAAS Analytics, Data Product Management)
«
»
071 - The ROI of UX Research and How It Applies to Data Products with Bill Albert
Manage episode 299550857 series 2938687
There are many benefits in talking with end users and stakeholders about their needs and pain points before designing a data product.
Just take it from Bill Albert, executive director of the Bentley University User Experience Center, author of Measuring the User Experience, and my guest for this week’s episode of Experiencing Data. With a career spanning more than 20 years in user experience research, design, and strategy, Bill has some great insights on how UX research is pivotal to designing a useful data product, the different types of customer research, and how many users you need to talk to to get useful info.
In our chat, we covered:
- How UX research techniques can help increase adoption of data products. (1:12)
- Conducting 'upfront research': Why talking to end users and stakeholders early on is crucial to designing a more valuable data product. (8:17)
- 'A participatory design process': How data scientists should conduct research with stakeholders before and during the designing of a data product. (14:57)
- How to determine sample sizes in user experience research -- and when to use qualitative vs. quantitative techniques. (17:52)
- How end user research and design improvements helped Boston Children's Hospital drastically increase the number of recurring donations. (24:38)
- How a person's worldview and experiences can shape how they interpret data. (32:38)
- The value of collecting metrics that reflect the success and usage of a data product. (38:11)
“Teams are constantly putting out dashboards and analytics applications — and now it’s machine learning and AI— and a whole lot of it never gets used because it hits all kinds of human walls in the deployment part.” - Brian (3:39)
“Dare to be simple. It’s important to understand giving [people exactly what they] want, and nothing more. That’s largely a reflection of organizational maturity; making those tough decisions and not throwing out every single possible feature [and] function that somebody might want at some point.” - Bill (7:50)
“As researchers, we need to more deeply understand the user needs and see what we’re not observing in the lab [and what] we can’t see through our analytics. There’s so much more out there that we can be doing to help move the experience forward and improve that in a substantial way.” - Bill (10:15)
“You need to do the upfront research; you need to talk to stakeholders and the end users as early as possible. And we’ve known about this for decades, that you will get way more value and come up with a better design, better product, the earlier you talk to people.” - Bill (13:25)
“Our research methods don’t change because what we’re trying to understand is technology-agnostic. It doesn’t matter whether it’s a toaster or a mobile phone — the questions that we’re trying to understand of how people are using this, how can we make this a better experience, those are constant.” - Bill (30:11)
“I think, what’s called model interpretability sometimes or explainable AI, I am seeing a change in the market in terms of more focus on explainability, less on model accuracy at all costs, which often likes to use advanced techniques like deep learning, which are essentially black box techniques right now. And the cost associated with black box is, ‘I don’t know how you came up with this and I’m really leery to trust it.’” - Brian (31:56)
Resources and Links:
- Bentley University User Experience Center: https://www.bentley.edu/centers/user-experience-center
- Measuring the User Experience: https://www.amazon.com/Measuring-User-Experience-Interactive-Technologies/dp/0124157815
- www.bentley.edu/uxc: https://www.bentley.edu/uxc
- LinkedIn: https://www.linkedin.com/in/walbert/
105 פרקים
Manage episode 299550857 series 2938687
There are many benefits in talking with end users and stakeholders about their needs and pain points before designing a data product.
Just take it from Bill Albert, executive director of the Bentley University User Experience Center, author of Measuring the User Experience, and my guest for this week’s episode of Experiencing Data. With a career spanning more than 20 years in user experience research, design, and strategy, Bill has some great insights on how UX research is pivotal to designing a useful data product, the different types of customer research, and how many users you need to talk to to get useful info.
In our chat, we covered:
- How UX research techniques can help increase adoption of data products. (1:12)
- Conducting 'upfront research': Why talking to end users and stakeholders early on is crucial to designing a more valuable data product. (8:17)
- 'A participatory design process': How data scientists should conduct research with stakeholders before and during the designing of a data product. (14:57)
- How to determine sample sizes in user experience research -- and when to use qualitative vs. quantitative techniques. (17:52)
- How end user research and design improvements helped Boston Children's Hospital drastically increase the number of recurring donations. (24:38)
- How a person's worldview and experiences can shape how they interpret data. (32:38)
- The value of collecting metrics that reflect the success and usage of a data product. (38:11)
“Teams are constantly putting out dashboards and analytics applications — and now it’s machine learning and AI— and a whole lot of it never gets used because it hits all kinds of human walls in the deployment part.” - Brian (3:39)
“Dare to be simple. It’s important to understand giving [people exactly what they] want, and nothing more. That’s largely a reflection of organizational maturity; making those tough decisions and not throwing out every single possible feature [and] function that somebody might want at some point.” - Bill (7:50)
“As researchers, we need to more deeply understand the user needs and see what we’re not observing in the lab [and what] we can’t see through our analytics. There’s so much more out there that we can be doing to help move the experience forward and improve that in a substantial way.” - Bill (10:15)
“You need to do the upfront research; you need to talk to stakeholders and the end users as early as possible. And we’ve known about this for decades, that you will get way more value and come up with a better design, better product, the earlier you talk to people.” - Bill (13:25)
“Our research methods don’t change because what we’re trying to understand is technology-agnostic. It doesn’t matter whether it’s a toaster or a mobile phone — the questions that we’re trying to understand of how people are using this, how can we make this a better experience, those are constant.” - Bill (30:11)
“I think, what’s called model interpretability sometimes or explainable AI, I am seeing a change in the market in terms of more focus on explainability, less on model accuracy at all costs, which often likes to use advanced techniques like deep learning, which are essentially black box techniques right now. And the cost associated with black box is, ‘I don’t know how you came up with this and I’m really leery to trust it.’” - Brian (31:56)
Resources and Links:
- Bentley University User Experience Center: https://www.bentley.edu/centers/user-experience-center
- Measuring the User Experience: https://www.amazon.com/Measuring-User-Experience-Interactive-Technologies/dp/0124157815
- www.bentley.edu/uxc: https://www.bentley.edu/uxc
- LinkedIn: https://www.linkedin.com/in/walbert/
105 פרקים
כל הפרקים
×
1 169 - AI Product Management and UX: What’s New (If Anything) About Making Valuable LLM-Powered Products with Stuart Winter-Tear 1:01:05

1 168 - 10 Challenges Internal Data Teams May Face Building Their First Revenue-Generating Data Product 38:24

1 167 - AI Product Management and Design: How Natalia Andreyeva and Team at Infor Nexus Create B2B Data Products that Customers Value 37:34

1 166 - Can UX Quality Metrics Increase Your Data Product's Business Value and Adoption? 26:12

1 165 - How to Accommodate Multiple User Types and Needs in B2B Analytics and AI Products When You Lack UX Resources 49:04

1 164 - The Hidden UX Taxes that AI and LLM Features Impose on B2B Customers Without Your Knowledge 45:25

1 163 - It’s Not a Math Problem: How to Quantify the Value of Your Enterprise Data Products or Your Data Product Management Function 41:41

1 162 - Beyond UI: Designing User Experiences for LLM and GenAI-Based Products 42:07

1 161 - Designing and Selling Enterprise AI Products [Worth Paying For] 34:00

1 160 - Leading Product Through a Merger/Acquisition: Lessons from The Predictive Index’s CPO Adam Berke 42:10

1 159 - Uncorking Customer Insights: How Data Products Revealed Hidden Gems in Liquor & Hospitality Retail 40:47

1 158 - From Resistance to Reliance: Designing Data Products for Non-Believers with Anna Jacobson of Operator Collective 43:41

1 157 - How this materials science SAAS company brings PM+UX+data science together to help materials scientists accelerate R&D 34:58

1 156-The Challenges of Bringing UX Design and Data Science Together to Make Successful Pharma Data Products with Jeremy Forman 41:37

1 155 - Understanding Human Engagement Risk When Designing AI and GenAI User Experiences 55:33
ברוכים הבאים אל Player FM!
Player FM סורק את האינטרנט עבור פודקאסטים באיכות גבוהה בשבילכם כדי שתהנו מהם כרגע. זה יישום הפודקאסט הטוב ביותר והוא עובד על אנדרואיד, iPhone ואינטרנט. הירשמו לסנכרון מנויים במכשירים שונים.