19 subscribers
התחל במצב לא מקוון עם האפליקציה Player FM !
פודקאסטים ששווה להאזין
בחסות


Experiencing Data w/ Brian T. O’Neill (UX for AI Data Products, SAAS Analytics, Data Product Management)
«
»
075 - How CDW is Integrating Design Into Its Data Science and Analytics Teams with Prasad Vadlamani
Manage episode 303916631 series 2938687
How do we get the most breadth out of design and designers when building data products? One way is to have designers be at the front leading the charge when it comes to creating data products that must be useful, usable, and valuable.
For this episode Prasad Vadlamani, CDW’s Director of Data Science and Advanced Analytics, joins us for a chat about how they are making design a larger focus of how they create useful, usable data products. Prasad talks about the importance of making technology—including AI-driven solutions—human centered, and how CDW tries to keep the end user in mind.
Prasad and I also discuss his perspectives on how to build designers into a data product team and how to successfully navigate the grey areas between various areas of expertise. When this is done well, then the entire team can work with each other's strengths and advantages to create a more robust product. We also discuss the role a UI-free user experience plays in some data products, some differences between external and internally-facing solutions, and some of Prasad’s valuable takeaways that have helped to shape the way he thinks design, data science, and analytics can collaborate.
In our chat, we covered:
- Prasad’s first introduction to designers and how he leverages the disciplines of design and product in his data science and analytics work (1:09)
- The terminology behind product manager and designer and how these functions play a role in an enterprise AI team (5:18)
- How teams can use their wide range of competencies to their advantage (8:52)
- A look at one UI-less experience and the value of the “invisible interface” (14:58)
- Understanding the model development process and why the model takes up only a small percentage of the effort required to successfully bring a data product to end users (20:52)
- The differences between building an internal vs external product, what to consider, and Prasad’s “customer zero” approach. (29.17)
- Expectations Prasad sets with customers (stakeholders) about the life expectancy of data products when they are in their early stage of development (35:02)
105 פרקים
Manage episode 303916631 series 2938687
How do we get the most breadth out of design and designers when building data products? One way is to have designers be at the front leading the charge when it comes to creating data products that must be useful, usable, and valuable.
For this episode Prasad Vadlamani, CDW’s Director of Data Science and Advanced Analytics, joins us for a chat about how they are making design a larger focus of how they create useful, usable data products. Prasad talks about the importance of making technology—including AI-driven solutions—human centered, and how CDW tries to keep the end user in mind.
Prasad and I also discuss his perspectives on how to build designers into a data product team and how to successfully navigate the grey areas between various areas of expertise. When this is done well, then the entire team can work with each other's strengths and advantages to create a more robust product. We also discuss the role a UI-free user experience plays in some data products, some differences between external and internally-facing solutions, and some of Prasad’s valuable takeaways that have helped to shape the way he thinks design, data science, and analytics can collaborate.
In our chat, we covered:
- Prasad’s first introduction to designers and how he leverages the disciplines of design and product in his data science and analytics work (1:09)
- The terminology behind product manager and designer and how these functions play a role in an enterprise AI team (5:18)
- How teams can use their wide range of competencies to their advantage (8:52)
- A look at one UI-less experience and the value of the “invisible interface” (14:58)
- Understanding the model development process and why the model takes up only a small percentage of the effort required to successfully bring a data product to end users (20:52)
- The differences between building an internal vs external product, what to consider, and Prasad’s “customer zero” approach. (29.17)
- Expectations Prasad sets with customers (stakeholders) about the life expectancy of data products when they are in their early stage of development (35:02)
105 פרקים
כל הפרקים
×
1 172 - Building AI Assistants, Not Autopilots: What Tony Zhang’s Research Shows About Automation Blindness 44:24

1 171 - Who Can Succeed in a Data or AI Product Management Role? 50:04

1 170 - Turning Data into Impactful AI Products at Experian: Lessons from North American Chief AI Officer Shri Santhnam (Promoted Episode) 42:33

1 169 - AI Product Management and UX: What’s New (If Anything) About Making Valuable LLM-Powered Products with Stuart Winter-Tear 1:01:05

1 168 - 10 Challenges Internal Data Teams May Face Building Their First Revenue-Generating Data Product 38:24

1 167 - AI Product Management and Design: How Natalia Andreyeva and Team at Infor Nexus Create B2B Data Products that Customers Value 37:34

1 166 - Can UX Quality Metrics Increase Your Data Product's Business Value and Adoption? 26:12

1 165 - How to Accommodate Multiple User Types and Needs in B2B Analytics and AI Products When You Lack UX Resources 49:04

1 164 - The Hidden UX Taxes that AI and LLM Features Impose on B2B Customers Without Your Knowledge 45:25

1 163 - It’s Not a Math Problem: How to Quantify the Value of Your Enterprise Data Products or Your Data Product Management Function 41:41

1 162 - Beyond UI: Designing User Experiences for LLM and GenAI-Based Products 42:07

1 161 - Designing and Selling Enterprise AI Products [Worth Paying For] 34:00

1 160 - Leading Product Through a Merger/Acquisition: Lessons from The Predictive Index’s CPO Adam Berke 42:10

1 159 - Uncorking Customer Insights: How Data Products Revealed Hidden Gems in Liquor & Hospitality Retail 40:47

1 158 - From Resistance to Reliance: Designing Data Products for Non-Believers with Anna Jacobson of Operator Collective 43:41

1 157 - How this materials science SAAS company brings PM+UX+data science together to help materials scientists accelerate R&D 34:58

1 156-The Challenges of Bringing UX Design and Data Science Together to Make Successful Pharma Data Products with Jeremy Forman 41:37

1 155 - Understanding Human Engagement Risk When Designing AI and GenAI User Experiences 55:33

1 154 - 10 Things Founders of B2B SAAS Analytics and AI Startups Get Wrong About DIY Product and UI/UX Design 44:47

1 153 - What Impressed Me About How John Felushko Does Product and UX at the Analytics SAAS Company, LabStats 57:31

1 152 - 10 Reasons Not to Get Professional UX Design Help for Your Enterprise AI or SAAS Analytics Product 53:00

1 151 - Monetizing SAAS Analytics and The Challenges of Designing a Successful Embedded BI Product (Promoted Episode) 49:57

1 150 - How Specialized LLMs Can Help Enterprises Deliver Better GenAI User Experiences with Mark Ramsey 52:22

1 149 - What the Data Says About Why So Many Data Science and AI Initiatives Are Still Failing to Produce Value with Evan Shellshear 50:18

1 148 - UI/UX Design Considerations for LLMs in Enterprise Applications (Part 2) 26:36

1 147 - UI/UX Design Considerations for LLMs in Enterprise Applications (Part 1) 25:46

1 146 - (Rebroadcast) Beyond Data Science - Why Human-Centered AI Needs Design with Ben Shneiderman 42:07

1 145 - Data Product Success: Adopting a Customer-Centric Approach With Malcolm Hawker, Head of Data Management at Profisee 53:09

1 144 - The Data Product Debate: Essential Tech or Excessive Effort? with Shashank Garg, CEO of Infocepts (Promoted Episode) 52:38

1 143 - The (5) Top Reasons AI/ML and Analytics SAAS Product Leaders Come to Me For UI/UX Design Help 50:01
ברוכים הבאים אל Player FM!
Player FM סורק את האינטרנט עבור פודקאסטים באיכות גבוהה בשבילכם כדי שתהנו מהם כרגע. זה יישום הפודקאסט הטוב ביותר והוא עובד על אנדרואיד, iPhone ואינטרנט. הירשמו לסנכרון מנויים במכשירים שונים.