Artwork

תוכן מסופק על ידי Mike Breault. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Mike Breault או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.
Player FM - אפליקציית פודקאסט
התחל במצב לא מקוון עם האפליקציה Player FM !

Frobenius Normal Form: The Unique Fingerprint of Matrix Similarity

5:04
 
שתפו
 

Manage episode 523016300 series 3690682
תוכן מסופק על ידי Mike Breault. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Mike Breault או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.

Dive into the Frobenius (Rational) Canonical Form and discover how it gives each square matrix a unique fingerprint that survives changes of basis. We’ll see why this form avoids eigenvalue factoring, using invariant factors and companion blocks to build a canonical block-diagonal picture. Compare it with diagonalization and Jordan form, and learn when the FNC shines—over any field, including finite fields—providing a definitive answer to when two matrices are similar. We’ll unpack the ideas of cyclic subspaces, minimal polynomials, and the invariant-factor divisibility that guarantees uniqueness.

Note: This podcast was AI-generated, and sometimes AI can make mistakes. Please double-check any critical information.

Sponsored by Embersilk LLC

  continue reading

1574 פרקים

Artwork
iconשתפו
 
Manage episode 523016300 series 3690682
תוכן מסופק על ידי Mike Breault. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Mike Breault או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.

Dive into the Frobenius (Rational) Canonical Form and discover how it gives each square matrix a unique fingerprint that survives changes of basis. We’ll see why this form avoids eigenvalue factoring, using invariant factors and companion blocks to build a canonical block-diagonal picture. Compare it with diagonalization and Jordan form, and learn when the FNC shines—over any field, including finite fields—providing a definitive answer to when two matrices are similar. We’ll unpack the ideas of cyclic subspaces, minimal polynomials, and the invariant-factor divisibility that guarantees uniqueness.

Note: This podcast was AI-generated, and sometimes AI can make mistakes. Please double-check any critical information.

Sponsored by Embersilk LLC

  continue reading

1574 פרקים

כל הפרקים

×
 
Loading …

ברוכים הבאים אל Player FM!

Player FM סורק את האינטרנט עבור פודקאסטים באיכות גבוהה בשבילכם כדי שתהנו מהם כרגע. זה יישום הפודקאסט הטוב ביותר והוא עובד על אנדרואיד, iPhone ואינטרנט. הירשמו לסנכרון מנויים במכשירים שונים.

 

מדריך עזר מהיר

האזן לתוכנית הזו בזמן שאתה חוקר
הפעלה