Artwork

תוכן מסופק על ידי Demetrios. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Demetrios או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.
Player FM - אפליקציית פודקאסט
התחל במצב לא מקוון עם האפליקציה Player FM !

Eliminating Garbage In/Garbage Out for Analytics and ML // Roy Hasson & Santona Tuli // MLOps Podcast #166

50:37
 
שתפו
 

Manage episode 371577877 series 3241972
תוכן מסופק על ידי Demetrios. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Demetrios או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.

MLOps Coffee Sessions #166 with Roy Hasson & Santona Tuli, Eliminating Garbage In/Garbage Out for Analytics and ML. // Abstract Shift left data quality ownership and observability that makes it easy for users to catch bad data at the source and stop it from entering your analytics/ML stack. // Bio Santona Tuli Santona Tuli, Ph.D. began her data journey through fundamental physics—searching through massive event data from particle collisions at CERN to detect rare particles. She’s since extended her machine learning engineering to natural language processing, before switching focus to product and data engineering for data workflow authoring frameworks. As a Python engineer, she started with the programmatic data orchestration tool, Airflow, helping improve its developer experience for data science and machine learning pipelines. Currently, at Upsolver, she leads data engineering and science, driving developer research and engagement for the declarative workflow authoring framework in SQL. Dr. Tuli is passionate about building, as well as empowering others to build, end-to-end data and ML pipelines, scalably. Roy Hasson Roy is the head of product at Upsolver helping companies deliver high-quality data to their analytics and ML tools. Previously, Roy led product management for AWS Glue and AWS Lake Formation. // MLOps Jobs board https://mlops.pallet.xyz/jobs // MLOps Swag/Merch https://mlops-community.myshopify.com/ // Related Links https://royondata.substack.com/ --------------- ✌️Connect With Us ✌️ ------------- Join our slack community: https://go.mlops.community/slack Follow us on Twitter: @mlopscommunity Sign up for the next meetup: https://go.mlops.community/register Catch all episodes, blogs, newsletters, and more: https://mlops.community/ Connect with Demetrios on LinkedIn: https://www.linkedin.com/in/dpbrinkm/ Connect with Roy on LinkedIn: https://www.linkedin.com/in/royhasson/ Connect with Santona on LinkedIn: https://www.linkedin.com/in/santona-tuli/ Timestamps: [00:00] Santona's and Roy's preferred coffee [01:05] Santona's and Roy's background [03:33] Takeaways [05:49] Please like, share, and subscribe to our MLOps channels! [06:42] Back story of having Santona and Roy on the podcast [09:51] Santona's story [11:37] Optimal tag teamwork [16:53] Dealing with stakeholder needs [26:25] Having mechanisms in place [27:30] Building for data Engineers vs building for data scientists [34:50] Creating solutions for users [38:55] User experience holistic point of view [41:11] Tooling sprawl is real [42:00] LLMs reliability [45:00] Things would have loved to learn five years ago [49:46] Wrap up

  continue reading

436 פרקים

Artwork
iconשתפו
 
Manage episode 371577877 series 3241972
תוכן מסופק על ידי Demetrios. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Demetrios או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.

MLOps Coffee Sessions #166 with Roy Hasson & Santona Tuli, Eliminating Garbage In/Garbage Out for Analytics and ML. // Abstract Shift left data quality ownership and observability that makes it easy for users to catch bad data at the source and stop it from entering your analytics/ML stack. // Bio Santona Tuli Santona Tuli, Ph.D. began her data journey through fundamental physics—searching through massive event data from particle collisions at CERN to detect rare particles. She’s since extended her machine learning engineering to natural language processing, before switching focus to product and data engineering for data workflow authoring frameworks. As a Python engineer, she started with the programmatic data orchestration tool, Airflow, helping improve its developer experience for data science and machine learning pipelines. Currently, at Upsolver, she leads data engineering and science, driving developer research and engagement for the declarative workflow authoring framework in SQL. Dr. Tuli is passionate about building, as well as empowering others to build, end-to-end data and ML pipelines, scalably. Roy Hasson Roy is the head of product at Upsolver helping companies deliver high-quality data to their analytics and ML tools. Previously, Roy led product management for AWS Glue and AWS Lake Formation. // MLOps Jobs board https://mlops.pallet.xyz/jobs // MLOps Swag/Merch https://mlops-community.myshopify.com/ // Related Links https://royondata.substack.com/ --------------- ✌️Connect With Us ✌️ ------------- Join our slack community: https://go.mlops.community/slack Follow us on Twitter: @mlopscommunity Sign up for the next meetup: https://go.mlops.community/register Catch all episodes, blogs, newsletters, and more: https://mlops.community/ Connect with Demetrios on LinkedIn: https://www.linkedin.com/in/dpbrinkm/ Connect with Roy on LinkedIn: https://www.linkedin.com/in/royhasson/ Connect with Santona on LinkedIn: https://www.linkedin.com/in/santona-tuli/ Timestamps: [00:00] Santona's and Roy's preferred coffee [01:05] Santona's and Roy's background [03:33] Takeaways [05:49] Please like, share, and subscribe to our MLOps channels! [06:42] Back story of having Santona and Roy on the podcast [09:51] Santona's story [11:37] Optimal tag teamwork [16:53] Dealing with stakeholder needs [26:25] Having mechanisms in place [27:30] Building for data Engineers vs building for data scientists [34:50] Creating solutions for users [38:55] User experience holistic point of view [41:11] Tooling sprawl is real [42:00] LLMs reliability [45:00] Things would have loved to learn five years ago [49:46] Wrap up

  continue reading

436 פרקים

כל הפרקים

×
 
Loading …

ברוכים הבאים אל Player FM!

Player FM סורק את האינטרנט עבור פודקאסטים באיכות גבוהה בשבילכם כדי שתהנו מהם כרגע. זה יישום הפודקאסט הטוב ביותר והוא עובד על אנדרואיד, iPhone ואינטרנט. הירשמו לסנכרון מנויים במכשירים שונים.

 

מדריך עזר מהיר

האזן לתוכנית הזו בזמן שאתה חוקר
הפעלה