Artwork

תוכן מסופק על ידי Demetrios. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Demetrios או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.
Player FM - אפליקציית פודקאסט
התחל במצב לא מקוון עם האפליקציה Player FM !

Feature Stores at Shopify and Skyscanner // Matt Delacour and Mike Moran // Reading Group #4

49:35
 
שתפו
 

Manage episode 321054219 series 3241972
תוכן מסופק על ידי Demetrios. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Demetrios או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.

MLOps Reading Group meeting on February 11, 2022
Reading Group Session about Feature Stores with Matt Delacour and Mike Moran
--------------- ✌️Connect With Us ✌️ -------------
Join our slack community: https://go.mlops.community/slack
Follow us on Twitter: @mlopscommunity
Connect with us on LinkedIn: https://www.linkedin.com/company/mlopscommunity/
Sign up for the next meetup: https://go.mlops.community/register
Catch all episodes, Feature Store, Machine Learning Monitoring and Blogs: https://mlops.community/
Timestamps:
[00:05] Matt's intro
[00:26] Mike's intro
[01:09] Matt’s talk: Feature store system at Shopify
[01:45] What is Shopify?
[02:05] Shopify Use Case
[02:38] Choosing a solution
[03:19] Managed service vs In-house vs Open-source (Feast)
[06:01] Why did we choose Feast?
[11:25] Implementation Strategy (multi-repo vs mono-repo approaches)
[13:01] Mono-repo approach breakdown
[14:30] Internal SDK
[17:01] Q&A: Does feast satisfy scalability for online inference of Shopify latency requirements?
[19:05] Q&A: Do you rely on Feast to serialize data to the online store?
[20:13] Q&A: Is your mono-repo library a subset of Feast?
[21:18] Q&A: Did you consider using git submodules for a multi-repo?
[23:02] Q&A: Are you storing embeddings with Feast?
[24:30] Q&A: Regarding the mono-repo, which modules are responsible for feature engineering? How do you guarantee that different feature engineering can be used across many DS?
[27:58] Mike’s talk (Feature store at Skyscanner)
[28:08] Kaleidoscope System
[28:25] Background and context of the Feature store
[29:30] Initial state of the feature store
[30:13] How does the marketing team also leverage the feature store
[31:04] Current state of the feature store (marketing & machine learning)
[31:44] SDK approach of creating schemas with dataframes (easy access)
[32:16] Reusability across teams among marketing and DS team
[33:06] GDPR constraints
[33:34] Data updates at the feature store
[36:09] Q&A: When a DS updates a feature, how are you communicating that across teams?
[38:25] Q&A: Are you applying different levels of feature engineering to increase the likelihood of a DS going back to a previous checkpoint of processing?
[40:55] Q&A: In what languages are you implementing the feature store?
[44:28] Q&A: Regarding performance-wise, how do you decide what code remains in Apache Spark vs SQL?
[49:00] Wrap-up

  continue reading

433 פרקים

Artwork
iconשתפו
 
Manage episode 321054219 series 3241972
תוכן מסופק על ידי Demetrios. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Demetrios או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.

MLOps Reading Group meeting on February 11, 2022
Reading Group Session about Feature Stores with Matt Delacour and Mike Moran
--------------- ✌️Connect With Us ✌️ -------------
Join our slack community: https://go.mlops.community/slack
Follow us on Twitter: @mlopscommunity
Connect with us on LinkedIn: https://www.linkedin.com/company/mlopscommunity/
Sign up for the next meetup: https://go.mlops.community/register
Catch all episodes, Feature Store, Machine Learning Monitoring and Blogs: https://mlops.community/
Timestamps:
[00:05] Matt's intro
[00:26] Mike's intro
[01:09] Matt’s talk: Feature store system at Shopify
[01:45] What is Shopify?
[02:05] Shopify Use Case
[02:38] Choosing a solution
[03:19] Managed service vs In-house vs Open-source (Feast)
[06:01] Why did we choose Feast?
[11:25] Implementation Strategy (multi-repo vs mono-repo approaches)
[13:01] Mono-repo approach breakdown
[14:30] Internal SDK
[17:01] Q&A: Does feast satisfy scalability for online inference of Shopify latency requirements?
[19:05] Q&A: Do you rely on Feast to serialize data to the online store?
[20:13] Q&A: Is your mono-repo library a subset of Feast?
[21:18] Q&A: Did you consider using git submodules for a multi-repo?
[23:02] Q&A: Are you storing embeddings with Feast?
[24:30] Q&A: Regarding the mono-repo, which modules are responsible for feature engineering? How do you guarantee that different feature engineering can be used across many DS?
[27:58] Mike’s talk (Feature store at Skyscanner)
[28:08] Kaleidoscope System
[28:25] Background and context of the Feature store
[29:30] Initial state of the feature store
[30:13] How does the marketing team also leverage the feature store
[31:04] Current state of the feature store (marketing & machine learning)
[31:44] SDK approach of creating schemas with dataframes (easy access)
[32:16] Reusability across teams among marketing and DS team
[33:06] GDPR constraints
[33:34] Data updates at the feature store
[36:09] Q&A: When a DS updates a feature, how are you communicating that across teams?
[38:25] Q&A: Are you applying different levels of feature engineering to increase the likelihood of a DS going back to a previous checkpoint of processing?
[40:55] Q&A: In what languages are you implementing the feature store?
[44:28] Q&A: Regarding performance-wise, how do you decide what code remains in Apache Spark vs SQL?
[49:00] Wrap-up

  continue reading

433 פרקים

כל הפרקים

×
 
Loading …

ברוכים הבאים אל Player FM!

Player FM סורק את האינטרנט עבור פודקאסטים באיכות גבוהה בשבילכם כדי שתהנו מהם כרגע. זה יישום הפודקאסט הטוב ביותר והוא עובד על אנדרואיד, iPhone ואינטרנט. הירשמו לסנכרון מנויים במכשירים שונים.

 

מדריך עזר מהיר

האזן לתוכנית הזו בזמן שאתה חוקר
הפעלה