Artwork

תוכן מסופק על ידי Demetrios. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Demetrios או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.
Player FM - אפליקציית פודקאסט
התחל במצב לא מקוון עם האפליקציה Player FM !

From Arduinos to LLMs: Exploring the Spectrum of ML // Soham Chatterjee // #162

44:49
 
שתפו
 

Manage episode 366586558 series 3241972
תוכן מסופק על ידי Demetrios. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Demetrios או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.

MLOps Coffee Sessions #162 with Soham Chatterjee, From LLMs to TinyML: The Dynamic Spectrum of MLOps, co-hosted by Abi Aryan.

// Abstract

Explore the spectrum of MLOps from large language models (LLMs) to TinyML. Soham highlights the difficulties of scaling machine learning models and cautions against relying exclusively on OpenAI's API due to its limitations. Soham is particularly interested in the effective deployment of models and the integration of IoT with deep learning. He offers insights into the challenges and strategies involved in deploying models in constrained environments, such as remote areas with limited power, and utilizing small devices like Arduino Nano.

// Bio

Soham leads the machine learning team at Sleek, where he builds tools for automated accounting and back-office management. As an electrical engineer, Soham has a passion for the intersection of machine learning and electronics, specifically TinyML/Edge Computing. He has several courses on MLOps and TinyMLOps available on Udacity and LinkedIn, with more courses in the works.

// MLOps Jobs board

jobs.mlops.community

// MLOps Swag/Merch

https://mlops-community.myshopify.com/

// Related Links

--------------- ✌️Connect With Us ✌️ -------------

Join our Slack community: https://go.mlops.community/slack

Follow us on Twitter: @mlopscommunity

Sign up for the next meetup: https://go.mlops.community/register

Catch all episodes, blogs, newsletters, and more: https://mlops.community/

Connect with Demetrios on LinkedIn: https://www.linkedin.com/in/dpbrinkm/

Connect with Abi on LinkedIn: https://www.linkedin.com/in/goabiaryan/

Connect with Soham on LinkedIn: https://www.linkedin.com/in/soham-chatterjee

Timestamps:

[00:00] Soham's preferred coffee

[01:49] Takeaways

[05:33] Please share this episode with

[07:02] Soham's background

[09:00] From electrical engineering to Machine Learning

[10:40] Deep learning, Edge Computing, and Quantum Computing

[11:34] Tiny ML

[13:29] Favorite area in Tiny ML chain

[14:03] Applications explored

[16:56] Operational challenges transformation

[18:49] Building with Large Language Models

[25:44] Most Optimal Model

[26:33] LLMs path

[29:19] Prompt engineering

[33:17] Migrating infrastructures to a new product

[37:20] Your success where others failed

[38:26] API Accessibility

[39:02] Reality about LLMs

[40:39] The Compression angle adds to the bias

[43:28] Wrap up

  continue reading

490 פרקים

Artwork
iconשתפו
 
Manage episode 366586558 series 3241972
תוכן מסופק על ידי Demetrios. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Demetrios או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.

MLOps Coffee Sessions #162 with Soham Chatterjee, From LLMs to TinyML: The Dynamic Spectrum of MLOps, co-hosted by Abi Aryan.

// Abstract

Explore the spectrum of MLOps from large language models (LLMs) to TinyML. Soham highlights the difficulties of scaling machine learning models and cautions against relying exclusively on OpenAI's API due to its limitations. Soham is particularly interested in the effective deployment of models and the integration of IoT with deep learning. He offers insights into the challenges and strategies involved in deploying models in constrained environments, such as remote areas with limited power, and utilizing small devices like Arduino Nano.

// Bio

Soham leads the machine learning team at Sleek, where he builds tools for automated accounting and back-office management. As an electrical engineer, Soham has a passion for the intersection of machine learning and electronics, specifically TinyML/Edge Computing. He has several courses on MLOps and TinyMLOps available on Udacity and LinkedIn, with more courses in the works.

// MLOps Jobs board

jobs.mlops.community

// MLOps Swag/Merch

https://mlops-community.myshopify.com/

// Related Links

--------------- ✌️Connect With Us ✌️ -------------

Join our Slack community: https://go.mlops.community/slack

Follow us on Twitter: @mlopscommunity

Sign up for the next meetup: https://go.mlops.community/register

Catch all episodes, blogs, newsletters, and more: https://mlops.community/

Connect with Demetrios on LinkedIn: https://www.linkedin.com/in/dpbrinkm/

Connect with Abi on LinkedIn: https://www.linkedin.com/in/goabiaryan/

Connect with Soham on LinkedIn: https://www.linkedin.com/in/soham-chatterjee

Timestamps:

[00:00] Soham's preferred coffee

[01:49] Takeaways

[05:33] Please share this episode with

[07:02] Soham's background

[09:00] From electrical engineering to Machine Learning

[10:40] Deep learning, Edge Computing, and Quantum Computing

[11:34] Tiny ML

[13:29] Favorite area in Tiny ML chain

[14:03] Applications explored

[16:56] Operational challenges transformation

[18:49] Building with Large Language Models

[25:44] Most Optimal Model

[26:33] LLMs path

[29:19] Prompt engineering

[33:17] Migrating infrastructures to a new product

[37:20] Your success where others failed

[38:26] API Accessibility

[39:02] Reality about LLMs

[40:39] The Compression angle adds to the bias

[43:28] Wrap up

  continue reading

490 פרקים

Semua episode

×
 
Loading …

ברוכים הבאים אל Player FM!

Player FM סורק את האינטרנט עבור פודקאסטים באיכות גבוהה בשבילכם כדי שתהנו מהם כרגע. זה יישום הפודקאסט הטוב ביותר והוא עובד על אנדרואיד, iPhone ואינטרנט. הירשמו לסנכרון מנויים במכשירים שונים.

 

מדריך עזר מהיר

האזן לתוכנית הזו בזמן שאתה חוקר
הפעלה