Artwork

תוכן מסופק על ידי Demetrios. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Demetrios או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.
Player FM - אפליקציית פודקאסט
התחל במצב לא מקוון עם האפליקציה Player FM !

Real-Time Forecasting Faceoff: Time Series vs. DNNs // Josh Xi // #305

53:41
 
שתפו
 

Manage episode 476461696 series 3241972
תוכן מסופק על ידי Demetrios. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Demetrios או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.

Real-Time Forecasting Faceoff: Time Series vs. DNNs // MLOps Podcast #305 with Josh Xi, Data Scientist at Lyft.

Join the Community: https://go.mlops.community/YTJoinIn Get the newsletter: https://go.mlops.community/YTNewsletter

// Abstract

In real-time forecasting (e.g. geohash level demand and supply forecast for an entire region), time series-based forecasting methods are widely adopted due to their simplicity and ease of training. This discussion explores how Lyft uses time series forecasting to respond to real-time market dynamics, covering practical tips and tricks for implementing these methods, an in-depth look at their adaptability for online re-training, and discussions on their interpretability and user intervention capabilities. By examining these topics, listeners will understand how time series forecasting can outperform DNNs, and how to effectively use time series forecasting for dynamic market conditions and decision-making applications.

// Bio

Josh is a data scientist from the Marketplace team at Lyft, working on forecasting and modeling of marketplace signals that power products like pricing and driver incentives. Josh got his PHD in Operations Research in 2013, with minors in Statistics and Economics. Prior to joining Lyft, he worked as a research scientist in the Operations Research Lab at General Motors, focusing on optimization, simulation and forecasting modeling related to vehicle manufacturing, supply chain and car sharing systems.

// Related Links

Website: https://www.lyft.com/

Real-Time Spatial Temporal Forecasting @ Lyft blog: https://eng.lyft.com/real-time-spatial-temporal-forecasting-lyft-fa90b3f3ec24

~~~~~~~~ ✌️Connect With Us ✌️ ~~~~~~~

Catch all episodes, blogs, newsletters, and more: https://go.mlops.community/TYExplore

Join our slack community [https://go.mlops.community/slack]

Follow us on X/Twitter [@mlopscommunity](https://x.com/mlopscommunity) or [LinkedIn](https://go.mlops.community/linkedin)]

Sign up for the next meetup: [https://go.mlops.community/register]

MLOps Swag/Merch: [https://shop.mlops.community/]

Connect with Demetrios on LinkedIn: /dpbrinkm

Connect with Josh on LinkedIn: /joshxiaominxi

  continue reading

434 פרקים

Artwork
iconשתפו
 
Manage episode 476461696 series 3241972
תוכן מסופק על ידי Demetrios. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Demetrios או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.

Real-Time Forecasting Faceoff: Time Series vs. DNNs // MLOps Podcast #305 with Josh Xi, Data Scientist at Lyft.

Join the Community: https://go.mlops.community/YTJoinIn Get the newsletter: https://go.mlops.community/YTNewsletter

// Abstract

In real-time forecasting (e.g. geohash level demand and supply forecast for an entire region), time series-based forecasting methods are widely adopted due to their simplicity and ease of training. This discussion explores how Lyft uses time series forecasting to respond to real-time market dynamics, covering practical tips and tricks for implementing these methods, an in-depth look at their adaptability for online re-training, and discussions on their interpretability and user intervention capabilities. By examining these topics, listeners will understand how time series forecasting can outperform DNNs, and how to effectively use time series forecasting for dynamic market conditions and decision-making applications.

// Bio

Josh is a data scientist from the Marketplace team at Lyft, working on forecasting and modeling of marketplace signals that power products like pricing and driver incentives. Josh got his PHD in Operations Research in 2013, with minors in Statistics and Economics. Prior to joining Lyft, he worked as a research scientist in the Operations Research Lab at General Motors, focusing on optimization, simulation and forecasting modeling related to vehicle manufacturing, supply chain and car sharing systems.

// Related Links

Website: https://www.lyft.com/

Real-Time Spatial Temporal Forecasting @ Lyft blog: https://eng.lyft.com/real-time-spatial-temporal-forecasting-lyft-fa90b3f3ec24

~~~~~~~~ ✌️Connect With Us ✌️ ~~~~~~~

Catch all episodes, blogs, newsletters, and more: https://go.mlops.community/TYExplore

Join our slack community [https://go.mlops.community/slack]

Follow us on X/Twitter [@mlopscommunity](https://x.com/mlopscommunity) or [LinkedIn](https://go.mlops.community/linkedin)]

Sign up for the next meetup: [https://go.mlops.community/register]

MLOps Swag/Merch: [https://shop.mlops.community/]

Connect with Demetrios on LinkedIn: /dpbrinkm

Connect with Josh on LinkedIn: /joshxiaominxi

  continue reading

434 פרקים

כל הפרקים

×
 
Loading …

ברוכים הבאים אל Player FM!

Player FM סורק את האינטרנט עבור פודקאסטים באיכות גבוהה בשבילכם כדי שתהנו מהם כרגע. זה יישום הפודקאסט הטוב ביותר והוא עובד על אנדרואיד, iPhone ואינטרנט. הירשמו לסנכרון מנויים במכשירים שונים.

 

מדריך עזר מהיר

האזן לתוכנית הזו בזמן שאתה חוקר
הפעלה