56 subscribers
התחל במצב לא מקוון עם האפליקציה Player FM !
פודקאסטים ששווה להאזין
בחסות
The Shipyard: Lessons Learned While Building an ML Platform / Automating Adherence // Joseph Haaga // Coffee Sessions #91
Manage episode 324843621 series 3241972
MLOps Coffee Sessions #91 with Joseph Haaga, The Shipyard: Lessons Learned While Building an ML Platform / Automating Adherence.
// Abstract
Joseph Haaga and the Interos team walk us through their design decisions in building an internal data platform. Joseph talks about why their use case wasn't a fit for off the self solutions, what their internal tool snitch does, and how they use git as a model registry.
Shipyard blogpost series: https://medium.com/interos-engineering.
// Bio
Joseph leads the ML Platform team at Interos, the operational resilience company. He was introduced to ML Ops while working as a Senior Data Engineer and has spent the past year building a platform for experimentation and serving. He lives in Washington, DC, with his dog Cheese.
// MLOps Jobs board
https://mlops.pallet.xyz/jobs
// Related Links
Website: https://joehaaga.xyz
Medium: https://medium.com/interos-engineering
Shipyard blogpost series: https://medium.com/interos-engineering
--------------- ✌️Connect With Us ✌️ -------------
Join our slack community: https://go.mlops.community/slack
Follow us on Twitter: @mlopscommunity
Sign up for the next meetup: https://go.mlops.community/register
Catch all episodes, blogs, newsletters, and more: https://mlops.community/
Connect with Demetrios on LinkedIn: https://www.linkedin.com/in/dpbrinkm/
Connect with Vishnu on LinkedIn: https://www.linkedin.com/in/vrachakonda/
Connect with Joseph on LinkedIn: https://www.linkedin.com/in/joseph-haaga/
Timestamps:
[00:00] Introduction to Joseph Haaga
[02:07] Please subscribe, follow, like, rate, review our Spotify and Youtube channels
[02:31] New! Best of Slack Weekly Newsletter
[03:03] Interos [04:33] Global supply chain
[05:45] Machine Learning use cases of Interos
[06:17] Forecasting and optimization of routes
[07:14] Build, buy, open-source decision making
[10:06] Experiences with Kubeflow
[11:05] Creating standards and rules when creating the platform
[13:29] Snitches
[14:10] Inter-team discussions when processes fall apart
[16:56] Examples of the development process on the feedback of ML engineers and data scientists
[20:35] Preserving flexibility when introducing new models and formats
[21:37] Organizational structure of Interos
[23:40] Surface area for product
[24:46] Use of Git Ops to manage boarding pass
[28:04] Cultural emphasis
[30:02] Naming conventions
[32:28] Benefit of a clean slate
[33:16] One-size-fits-all choice
[37:34] Wrap up
446 פרקים
Manage episode 324843621 series 3241972
MLOps Coffee Sessions #91 with Joseph Haaga, The Shipyard: Lessons Learned While Building an ML Platform / Automating Adherence.
// Abstract
Joseph Haaga and the Interos team walk us through their design decisions in building an internal data platform. Joseph talks about why their use case wasn't a fit for off the self solutions, what their internal tool snitch does, and how they use git as a model registry.
Shipyard blogpost series: https://medium.com/interos-engineering.
// Bio
Joseph leads the ML Platform team at Interos, the operational resilience company. He was introduced to ML Ops while working as a Senior Data Engineer and has spent the past year building a platform for experimentation and serving. He lives in Washington, DC, with his dog Cheese.
// MLOps Jobs board
https://mlops.pallet.xyz/jobs
// Related Links
Website: https://joehaaga.xyz
Medium: https://medium.com/interos-engineering
Shipyard blogpost series: https://medium.com/interos-engineering
--------------- ✌️Connect With Us ✌️ -------------
Join our slack community: https://go.mlops.community/slack
Follow us on Twitter: @mlopscommunity
Sign up for the next meetup: https://go.mlops.community/register
Catch all episodes, blogs, newsletters, and more: https://mlops.community/
Connect with Demetrios on LinkedIn: https://www.linkedin.com/in/dpbrinkm/
Connect with Vishnu on LinkedIn: https://www.linkedin.com/in/vrachakonda/
Connect with Joseph on LinkedIn: https://www.linkedin.com/in/joseph-haaga/
Timestamps:
[00:00] Introduction to Joseph Haaga
[02:07] Please subscribe, follow, like, rate, review our Spotify and Youtube channels
[02:31] New! Best of Slack Weekly Newsletter
[03:03] Interos [04:33] Global supply chain
[05:45] Machine Learning use cases of Interos
[06:17] Forecasting and optimization of routes
[07:14] Build, buy, open-source decision making
[10:06] Experiences with Kubeflow
[11:05] Creating standards and rules when creating the platform
[13:29] Snitches
[14:10] Inter-team discussions when processes fall apart
[16:56] Examples of the development process on the feedback of ML engineers and data scientists
[20:35] Preserving flexibility when introducing new models and formats
[21:37] Organizational structure of Interos
[23:40] Surface area for product
[24:46] Use of Git Ops to manage boarding pass
[28:04] Cultural emphasis
[30:02] Naming conventions
[32:28] Benefit of a clean slate
[33:16] One-size-fits-all choice
[37:34] Wrap up
446 פרקים
כל הפרקים
×
1 Greg Kamradt: Benchmarking Intelligence | ARC Prize 48:30

1 Bridging the Gap Between AI and Business Data // Deepti Srivastava // #325 57:13

1 The Creator of FastAPI’s Next Chapter // Sebastián Ramírez // #324 1:09:37

1 Everything Hard About Building AI Agents Today 47:02

1 Tricks to Fine Tuning // Prithviraj Ammanabrolu // #318 54:01

1 Packaging MLOps Tech Neatly for Engineers and Non-engineers // Jukka Remes // #322 55:30

1 Hard Learned Lessons from Over a Decade in AI 48:42

1 Product Metrics are LLM Evals // Raza Habib CEO of Humanloop // #320 53:06

1 Getting AI Apps Past the Demo // Vaibhav Gupta // #319 50:29

1 Building Out GPU Clouds // Mohan Atreya // #317 47:57

1 A Candid Conversation Around MCP and A2A // Rahul Parundekar and Sam Partee // #316 SF Live 1:04:42

1 AI in M&A: Building, Buying, and the Future of Dealmaking // Kison Patel // #315 55:32

1 AI, Marketing, and Human Decision Making // Fausto Albers // #313 49:40

1 MLOps with Databricks // Maria Vechtomova // #314 52:43

1 Making AI Reliable is the Greatest Challenge of the 2020s // Alon Bochman // #312 1:01:37
ברוכים הבאים אל Player FM!
Player FM סורק את האינטרנט עבור פודקאסטים באיכות גבוהה בשבילכם כדי שתהנו מהם כרגע. זה יישום הפודקאסט הטוב ביותר והוא עובד על אנדרואיד, iPhone ואינטרנט. הירשמו לסנכרון מנויים במכשירים שונים.