Flash Forward is a show about possible (and not so possible) future scenarios. What would the warranty on a sex robot look like? How would diplomacy work if we couldn’t lie? Could there ever be a fecal transplant black market? (Complicated, it wouldn’t, and yes, respectively, in case you’re curious.) Hosted and produced by award winning science journalist Rose Eveleth, each episode combines audio drama and journalism to go deep on potential tomorrows, and uncovers what those futures might re ...
…
continue reading
תוכן מסופק על ידי NLP Highlights and Allen Institute for Artificial Intelligence. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי NLP Highlights and Allen Institute for Artificial Intelligence או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.
Player FM - אפליקציית פודקאסט
התחל במצב לא מקוון עם האפליקציה Player FM !
התחל במצב לא מקוון עם האפליקציה Player FM !
107 - Multi-Modal Transformers, with Hao Tan and Mohit Bansal
MP3•בית הפרקים
Manage episode 254400458 series 1452120
תוכן מסופק על ידי NLP Highlights and Allen Institute for Artificial Intelligence. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי NLP Highlights and Allen Institute for Artificial Intelligence או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.
In this episode, we invite Hao Tan and Mohit Bansal to talk about multi-modal training of transformers, focusing in particular on their EMNLP 2019 paper that introduced LXMERT, a vision+language transformer. We spend the first third of the episode talking about why you might want to have multi-modal representations. We then move to the specifics of LXMERT, including the model structure, the losses that are used to encourage cross-modal representations, and the data that is used. Along the way, we mention latent alignments between images and captions, the granularity of captions, and machine translation even comes up a few times. We conclude with some speculation on the future of multi-modal representations. Hao's website: http://www.cs.unc.edu/~airsplay/ Mohit's website: http://www.cs.unc.edu/~mbansal/ LXMERT paper: https://www.aclweb.org/anthology/D19-1514/
…
continue reading
145 פרקים
MP3•בית הפרקים
Manage episode 254400458 series 1452120
תוכן מסופק על ידי NLP Highlights and Allen Institute for Artificial Intelligence. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי NLP Highlights and Allen Institute for Artificial Intelligence או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.
In this episode, we invite Hao Tan and Mohit Bansal to talk about multi-modal training of transformers, focusing in particular on their EMNLP 2019 paper that introduced LXMERT, a vision+language transformer. We spend the first third of the episode talking about why you might want to have multi-modal representations. We then move to the specifics of LXMERT, including the model structure, the losses that are used to encourage cross-modal representations, and the data that is used. Along the way, we mention latent alignments between images and captions, the granularity of captions, and machine translation even comes up a few times. We conclude with some speculation on the future of multi-modal representations. Hao's website: http://www.cs.unc.edu/~airsplay/ Mohit's website: http://www.cs.unc.edu/~mbansal/ LXMERT paper: https://www.aclweb.org/anthology/D19-1514/
…
continue reading
145 פרקים
Tất cả các tập
×ברוכים הבאים אל Player FM!
Player FM סורק את האינטרנט עבור פודקאסטים באיכות גבוהה בשבילכם כדי שתהנו מהם כרגע. זה יישום הפודקאסט הטוב ביותר והוא עובד על אנדרואיד, iPhone ואינטרנט. הירשמו לסנכרון מנויים במכשירים שונים.