Artwork

תוכן מסופק על ידי OHBM. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי OHBM או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.
Player FM - אפליקציית פודקאסט
התחל במצב לא מקוון עם האפליקציה Player FM !

Neurosalience #S4E13 with Daniele Marinazzo - Networks, causality, new ideas to advance the field

1:26:44
 
שתפו
 

Manage episode 409090520 series 2888419
תוכן מסופק על ידי OHBM. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי OHBM או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.

Dr. Daniele Marinazzo is a full professor in the department of data analysis at the University of Ghent, in Belgium. For over a decade he has been showing us what further information and insight we may extract from brain imaging data - from EEG and MEG to fMRI. He is technically a statistical physicist, but in reality, he is a network neuroscientist and data modeler who is constantly pushing the envelope.

In this podcast he discusses some recent papers that go into how we might be able to improve the impact and relevance of new findings and models through careful benchmarking and well considered experimental design.

He talks about his desire to move from correlation to causation in functional connectivity studies, he discusses granger causality, as well as moving from pairwise correlation to multivariate correlation.

Furthermore, he delves into the limits of hemodynamics - limits that may be pushed back to a degree, as suggested by his compelling work showing that hemodynamic response function, which varies over space, may be estimated on a voxel-wise basis using resting state data alone.

His work in estimating and mapping the Excitation/Inhibition ratio in the brain by using gamma frequency coherence as a signature was also discussed. This has potentially profound clinical and research applications.

Lastly, his collaborative work with the European Human Brain Project towards the creation of the useful website, called ebrains (https://www.ebrains.eu), was discussed, which serves as a repository and tool for exploring shared data and code, as well as providing a user-friendly encapsulation of the project's collective effort.

It is an all-around fun, eye-opening discussion featuring an outstanding scientist who is not only deep in the trenches of network modelling, but also a strong proponent of open science and constant engagement across disciplines.

Episode producers:

Omer Faruk Gulban

Alfie Wearn

Stephania Assimopoulos

Referenced Papers:

Mika Rubinov. Circular and unified analysis in network neuroscience. eLife. 2023; 12:e79559. Doi: 10.7554/eLife.79559

Reid AT, et al. Advancing functional connectivity research from association to causation. Nat Neurosci. 2019 Nov;22(11):1751-1760. Doi: 10.1038/s41593-019-0510-4.

Valdes-Sosa PA et al. Effective connectivity: Influence, causality and biophysical modelling. Neuroimage. 2009; 58(2): 339-361. Doi: 10.1016/j.neuroimage.2011.03.058.

Wu GR, et al. A blind deconvolution approach to recover effective connectivity brain networks from resting state fMRI data. Medical Image Analysis. 2013; 17(3):365-374. Doi:

10.1016/j.media.2013.01.003.

  continue reading

102 פרקים

Artwork
iconשתפו
 
Manage episode 409090520 series 2888419
תוכן מסופק על ידי OHBM. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי OHBM או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.

Dr. Daniele Marinazzo is a full professor in the department of data analysis at the University of Ghent, in Belgium. For over a decade he has been showing us what further information and insight we may extract from brain imaging data - from EEG and MEG to fMRI. He is technically a statistical physicist, but in reality, he is a network neuroscientist and data modeler who is constantly pushing the envelope.

In this podcast he discusses some recent papers that go into how we might be able to improve the impact and relevance of new findings and models through careful benchmarking and well considered experimental design.

He talks about his desire to move from correlation to causation in functional connectivity studies, he discusses granger causality, as well as moving from pairwise correlation to multivariate correlation.

Furthermore, he delves into the limits of hemodynamics - limits that may be pushed back to a degree, as suggested by his compelling work showing that hemodynamic response function, which varies over space, may be estimated on a voxel-wise basis using resting state data alone.

His work in estimating and mapping the Excitation/Inhibition ratio in the brain by using gamma frequency coherence as a signature was also discussed. This has potentially profound clinical and research applications.

Lastly, his collaborative work with the European Human Brain Project towards the creation of the useful website, called ebrains (https://www.ebrains.eu), was discussed, which serves as a repository and tool for exploring shared data and code, as well as providing a user-friendly encapsulation of the project's collective effort.

It is an all-around fun, eye-opening discussion featuring an outstanding scientist who is not only deep in the trenches of network modelling, but also a strong proponent of open science and constant engagement across disciplines.

Episode producers:

Omer Faruk Gulban

Alfie Wearn

Stephania Assimopoulos

Referenced Papers:

Mika Rubinov. Circular and unified analysis in network neuroscience. eLife. 2023; 12:e79559. Doi: 10.7554/eLife.79559

Reid AT, et al. Advancing functional connectivity research from association to causation. Nat Neurosci. 2019 Nov;22(11):1751-1760. Doi: 10.1038/s41593-019-0510-4.

Valdes-Sosa PA et al. Effective connectivity: Influence, causality and biophysical modelling. Neuroimage. 2009; 58(2): 339-361. Doi: 10.1016/j.neuroimage.2011.03.058.

Wu GR, et al. A blind deconvolution approach to recover effective connectivity brain networks from resting state fMRI data. Medical Image Analysis. 2013; 17(3):365-374. Doi:

10.1016/j.media.2013.01.003.

  continue reading

102 פרקים

כל הפרקים

×
 
Loading …

ברוכים הבאים אל Player FM!

Player FM סורק את האינטרנט עבור פודקאסטים באיכות גבוהה בשבילכם כדי שתהנו מהם כרגע. זה יישום הפודקאסט הטוב ביותר והוא עובד על אנדרואיד, iPhone ואינטרנט. הירשמו לסנכרון מנויים במכשירים שונים.

 

מדריך עזר מהיר

האזן לתוכנית הזו בזמן שאתה חוקר
הפעלה