Artwork

תוכן מסופק על ידי O'Reilly Media. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי O'Reilly Media או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.
Player FM - אפליקציית פודקאסט
התחל במצב לא מקוון עם האפליקציה Player FM !

Labeling, transforming, and structuring training data sets for machine learning

40:51
 
שתפו
 

Manage episode 248276630 series 61203
תוכן מסופק על ידי O'Reilly Media. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי O'Reilly Media או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.

In this episode of the Data Show, I speak with Alex Ratner, project lead for Stanford’s Snorkel open source project; Ratner also recently garnered a faculty position at the University of Washington and is currently working on a company supporting and extending the Snorkel project. Snorkel is a framework for building and managing training data. Based on our survey from earlier this year, labeled data remains a key bottleneck for organizations building machine learning applications and services.

Ratner was a guest on the podcast a little over two years ago when Snorkel was a relatively new project. Since then, Snorkel has added more features, expanded into computer vision use cases, and now boasts many users, including Google, Intel, IBM, and other organizations. Along with his thesis advisor professor Chris Ré of Stanford, Ratner and his collaborators have long championed the importance of building tools aimed squarely at helping teams build and manage training data. With today’s release of Snorkel version 0.9, we are a step closer to having a framework that enables the programmatic creation of training data sets.

Snorkel pipeline for data labeling
Snorkel pipeline for data labeling. Source: Alex Ratner, used with permission.

We had a great conversation spanning many topics, including:

  • Why he and his collaborators decided to focus on “data programming” and tools for building and managing training data.
  • A tour through Snorkel, including its target users and key components.
  • What’s in the newly released version (v 0.9) of Snorkel.
  • The number of Snorkel’s users has grown quite a bit since we last spoke, so we went through some of the common use cases for the project.
  • Data lineage, AutoML, and end-to-end automation of machine learning pipelines.
  • Holoclean and other projects focused on data quality and data programming.
  • The need for tools that can ease the transition from raw data to derived data (e.g., entities), insights, and even knowledge.

Related resources:

  continue reading

168 פרקים

Artwork
iconשתפו
 
Manage episode 248276630 series 61203
תוכן מסופק על ידי O'Reilly Media. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי O'Reilly Media או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.

In this episode of the Data Show, I speak with Alex Ratner, project lead for Stanford’s Snorkel open source project; Ratner also recently garnered a faculty position at the University of Washington and is currently working on a company supporting and extending the Snorkel project. Snorkel is a framework for building and managing training data. Based on our survey from earlier this year, labeled data remains a key bottleneck for organizations building machine learning applications and services.

Ratner was a guest on the podcast a little over two years ago when Snorkel was a relatively new project. Since then, Snorkel has added more features, expanded into computer vision use cases, and now boasts many users, including Google, Intel, IBM, and other organizations. Along with his thesis advisor professor Chris Ré of Stanford, Ratner and his collaborators have long championed the importance of building tools aimed squarely at helping teams build and manage training data. With today’s release of Snorkel version 0.9, we are a step closer to having a framework that enables the programmatic creation of training data sets.

Snorkel pipeline for data labeling
Snorkel pipeline for data labeling. Source: Alex Ratner, used with permission.

We had a great conversation spanning many topics, including:

  • Why he and his collaborators decided to focus on “data programming” and tools for building and managing training data.
  • A tour through Snorkel, including its target users and key components.
  • What’s in the newly released version (v 0.9) of Snorkel.
  • The number of Snorkel’s users has grown quite a bit since we last spoke, so we went through some of the common use cases for the project.
  • Data lineage, AutoML, and end-to-end automation of machine learning pipelines.
  • Holoclean and other projects focused on data quality and data programming.
  • The need for tools that can ease the transition from raw data to derived data (e.g., entities), insights, and even knowledge.

Related resources:

  continue reading

168 פרקים

All episodes

×
 
Loading …

ברוכים הבאים אל Player FM!

Player FM סורק את האינטרנט עבור פודקאסטים באיכות גבוהה בשבילכם כדי שתהנו מהם כרגע. זה יישום הפודקאסט הטוב ביותר והוא עובד על אנדרואיד, iPhone ואינטרנט. הירשמו לסנכרון מנויים במכשירים שונים.

 

מדריך עזר מהיר

האזן לתוכנית הזו בזמן שאתה חוקר
הפעלה