Artwork

תוכן מסופק על ידי Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.
Player FM - אפליקציית פודקאסט
התחל במצב לא מקוון עם האפליקציה Player FM !

Improving Analytics Using Enriched Network Flow Data

1:02:25
 
שתפו
 

Manage episode 361742674 series 1264075
תוכן מסופק על ידי Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.

Classic tool suites that are used to process network flow records deal with very limited detail on the network connections they summarize. These tools limit detail for several reasons: (1) to maintain long-baseline data, (2) to focus on security-indicative data fields, and (3) to support data collection across large or complex infrastructures. However, a consequence of this limited detail is that analysis results based on this data provide information about indications of behavior rather than information that accurately identifies behavior with high confidence. In this webcast, Tim Shimeall and Katherine Prevost discuss how to use IPFIX-formatted data with detail derived from deep packet inspection (DPI) to provide increased confidence in identifying behavior.

  continue reading

153 פרקים

Artwork
iconשתפו
 
Manage episode 361742674 series 1264075
תוכן מסופק על ידי Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.

Classic tool suites that are used to process network flow records deal with very limited detail on the network connections they summarize. These tools limit detail for several reasons: (1) to maintain long-baseline data, (2) to focus on security-indicative data fields, and (3) to support data collection across large or complex infrastructures. However, a consequence of this limited detail is that analysis results based on this data provide information about indications of behavior rather than information that accurately identifies behavior with high confidence. In this webcast, Tim Shimeall and Katherine Prevost discuss how to use IPFIX-formatted data with detail derived from deep packet inspection (DPI) to provide increased confidence in identifying behavior.

  continue reading

153 פרקים

Alle afleveringen

×
 
Loading …

ברוכים הבאים אל Player FM!

Player FM סורק את האינטרנט עבור פודקאסטים באיכות גבוהה בשבילכם כדי שתהנו מהם כרגע. זה יישום הפודקאסט הטוב ביותר והוא עובד על אנדרואיד, iPhone ואינטרנט. הירשמו לסנכרון מנויים במכשירים שונים.

 

מדריך עזר מהיר