Artwork

תוכן מסופק על ידי Universite Paris 1 Pantheon-Sorbonne. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Universite Paris 1 Pantheon-Sorbonne או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.
Player FM - אפליקציית פודקאסט
התחל במצב לא מקוון עם האפליקציה Player FM !

1.2 On the regularization of Sliced Inverse Regression (Stéphane Girard)

49:19
 
שתפו
 

סדרה בארכיון ("עדכון לא פעיל" status)

When? This feed was archived on June 29, 2023 09:11 (2y ago). Last successful fetch was on August 01, 2022 18:06 (3y ago)

Why? עדכון לא פעיל status. השרתים שלנו לא הצליחו לאחזר פודקאסט חוקי לזמן ממושך.

What now? You might be able to find a more up-to-date version using the search function. This series will no longer be checked for updates. If you believe this to be in error, please check if the publisher's feed link below is valid and contact support to request the feed be restored or if you have any other concerns about this.

Manage episode 188707044 series 1600644
תוכן מסופק על ידי Universite Paris 1 Pantheon-Sorbonne. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Universite Paris 1 Pantheon-Sorbonne או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.
Sliced Inverse Regression (SIR) is an effective method for dimension reduction in highdimensional regression problems. The original method, however, requires the inversion of the predictors covariance matrix. In case of collinearity between these predictors or small sample sizes compared to the dimension, the inversion is not possible and a regularization technique has to be used. Our approach is based on an interpretation of SIR axes as solutions of an inverse regression problem. A prior distribution is then introduced on the unknown parameters of the inverse regression problem in order to regularize their estimation. We show that some existing SIR regularizations can enter our framework, which permits a global understanding of these methods. Three new priors are proposed, leading to new regularizations of the SIR method, and compared on simulated data. An application to the estimation of Mars surface physical properties from hyperspectral images is provided.
  continue reading

12 פרקים

Artwork
iconשתפו
 

סדרה בארכיון ("עדכון לא פעיל" status)

When? This feed was archived on June 29, 2023 09:11 (2y ago). Last successful fetch was on August 01, 2022 18:06 (3y ago)

Why? עדכון לא פעיל status. השרתים שלנו לא הצליחו לאחזר פודקאסט חוקי לזמן ממושך.

What now? You might be able to find a more up-to-date version using the search function. This series will no longer be checked for updates. If you believe this to be in error, please check if the publisher's feed link below is valid and contact support to request the feed be restored or if you have any other concerns about this.

Manage episode 188707044 series 1600644
תוכן מסופק על ידי Universite Paris 1 Pantheon-Sorbonne. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Universite Paris 1 Pantheon-Sorbonne או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.
Sliced Inverse Regression (SIR) is an effective method for dimension reduction in highdimensional regression problems. The original method, however, requires the inversion of the predictors covariance matrix. In case of collinearity between these predictors or small sample sizes compared to the dimension, the inversion is not possible and a regularization technique has to be used. Our approach is based on an interpretation of SIR axes as solutions of an inverse regression problem. A prior distribution is then introduced on the unknown parameters of the inverse regression problem in order to regularize their estimation. We show that some existing SIR regularizations can enter our framework, which permits a global understanding of these methods. Three new priors are proposed, leading to new regularizations of the SIR method, and compared on simulated data. An application to the estimation of Mars surface physical properties from hyperspectral images is provided.
  continue reading

12 פרקים

כל הפרקים

×
 
Loading …

ברוכים הבאים אל Player FM!

Player FM סורק את האינטרנט עבור פודקאסטים באיכות גבוהה בשבילכם כדי שתהנו מהם כרגע. זה יישום הפודקאסט הטוב ביותר והוא עובד על אנדרואיד, iPhone ואינטרנט. הירשמו לסנכרון מנויים במכשירים שונים.

 

מדריך עזר מהיר

האזן לתוכנית הזו בזמן שאתה חוקר
הפעלה