התחל במצב לא מקוון עם האפליקציה Player FM !
פודקאסטים ששווה להאזין
בחסות


What is the Future of Streaming Data?
Manage episode 424666710 series 2510642
What’s the next big thing in the future of streaming data? In this episode, Greg DeMichillie (VP of Product and Solutions Marketing, Confluent) talks to Kris about the future of stream processing in environments where the value of data lies in their ability to intercept and interpret data.
Greg explains that organizations typically focus on the infrastructure containers themselves, and not on the thousands of data connections that form within. When they finally realize that they don't have a way to manage the complexity of these connections, a new problem arises: how do they approach managing such complexity? That’s where Confluent and Apache Kafka® come into play - they offer a consistent way to organize this seemingly endless web of data so they don't have to face the daunting task of figuring out how to connect their shopping portals or jump through hoops trying different ETL tools on various systems.
As more companies seek ways to manage this data, they are asking some basic questions:
- How to do it?
- Do best practices exist?
- How can we get help?
The next question for companies who have already adopted Kafka is a bit more complex: "What about my partners?” For example, companies with inventory management systems use supply chain systems to track product creation and shipping. As a result, they need to decide which emails to update, if they need to write custom REST APIs to sit in front of Kafka topics, etc. Advanced use cases like this raise additional questions about data governance, security, data policy, and PII, forcing companies to think differently about data.
Greg predicts this is the next big frontier as more companies adopt Kafka internally. And because they will have to think less about where the data is stored and more about how data moves, they will have to solve problems to make managing all that data easier. If you're an enthusiast of real-time data streaming, Greg invites you to attend the Kafka Summit (London) in May and Current (Austin, TX) for a deeper dive into the world of Apache Kafka-related topics now and beyond.
EPISODE LINKS
- What’s Ahead of the Future of Data Streaming?
- If Streaming Is the Answer, Why Are We Still Doing Batch?
- All Current 2022 sessions and slides
- Kafka Summit London 2023
- Current 2023
- Watch the video version of this podcast
- Kris Jenkins’ Twitter
- Streaming Audio Playlist
- Join the Confluent Community
- Learn more with Kafka tutorials, resources, and guides at Confluent Developer
- Live demo: Intro to Event-Driven Microservices with Confluent
- Use PODCAST100 to get an additional $100 of free Confluent Cloud usage (details)
פרקים
1. Intro (00:00:00)
2. How did Greg get started with event streaming? (00:07:11)
3. What is the value of data streaming in Apache Kafka? (00:13:22)
4. Event logs vs REST APIs (00:18:45)
5. What are the stages of Kafka adoption? (00:21:44)
6. What is the next big frontier in Kafka adoption? (00:25:41)
7. How do we get to the next stage of streaming data faster? (00:33:01)
8. It's a wrap! (00:39:56)
265 פרקים
Manage episode 424666710 series 2510642
What’s the next big thing in the future of streaming data? In this episode, Greg DeMichillie (VP of Product and Solutions Marketing, Confluent) talks to Kris about the future of stream processing in environments where the value of data lies in their ability to intercept and interpret data.
Greg explains that organizations typically focus on the infrastructure containers themselves, and not on the thousands of data connections that form within. When they finally realize that they don't have a way to manage the complexity of these connections, a new problem arises: how do they approach managing such complexity? That’s where Confluent and Apache Kafka® come into play - they offer a consistent way to organize this seemingly endless web of data so they don't have to face the daunting task of figuring out how to connect their shopping portals or jump through hoops trying different ETL tools on various systems.
As more companies seek ways to manage this data, they are asking some basic questions:
- How to do it?
- Do best practices exist?
- How can we get help?
The next question for companies who have already adopted Kafka is a bit more complex: "What about my partners?” For example, companies with inventory management systems use supply chain systems to track product creation and shipping. As a result, they need to decide which emails to update, if they need to write custom REST APIs to sit in front of Kafka topics, etc. Advanced use cases like this raise additional questions about data governance, security, data policy, and PII, forcing companies to think differently about data.
Greg predicts this is the next big frontier as more companies adopt Kafka internally. And because they will have to think less about where the data is stored and more about how data moves, they will have to solve problems to make managing all that data easier. If you're an enthusiast of real-time data streaming, Greg invites you to attend the Kafka Summit (London) in May and Current (Austin, TX) for a deeper dive into the world of Apache Kafka-related topics now and beyond.
EPISODE LINKS
- What’s Ahead of the Future of Data Streaming?
- If Streaming Is the Answer, Why Are We Still Doing Batch?
- All Current 2022 sessions and slides
- Kafka Summit London 2023
- Current 2023
- Watch the video version of this podcast
- Kris Jenkins’ Twitter
- Streaming Audio Playlist
- Join the Confluent Community
- Learn more with Kafka tutorials, resources, and guides at Confluent Developer
- Live demo: Intro to Event-Driven Microservices with Confluent
- Use PODCAST100 to get an additional $100 of free Confluent Cloud usage (details)
פרקים
1. Intro (00:00:00)
2. How did Greg get started with event streaming? (00:07:11)
3. What is the value of data streaming in Apache Kafka? (00:13:22)
4. Event logs vs REST APIs (00:18:45)
5. What are the stages of Kafka adoption? (00:21:44)
6. What is the next big frontier in Kafka adoption? (00:25:41)
7. How do we get to the next stage of streaming data faster? (00:33:01)
8. It's a wrap! (00:39:56)
265 פרקים
Semua episod
×
1 Apache Kafka 3.5 - Kafka Core, Connect, Streams, & Client Updates 11:25

1 How to use Data Contracts for Long-Term Schema Management 57:28

1 How to use Python with Apache Kafka 31:57

1 Next-Gen Data Modeling, Integrity, and Governance with YODA 55:55

1 Migrate Your Kafka Cluster with Minimal Downtime 1:01:30

1 Real-Time Data Transformation and Analytics with dbt Labs 43:41

1 What is the Future of Streaming Data? 41:29

1 What can Apache Kafka Developers learn from Online Gaming? 55:32


1 How to use OpenTelemetry to Trace and Monitor Apache Kafka Systems 50:01

1 What is Data Democratization and Why is it Important? 47:27

1 Git for Data: Managing Data like Code with lakeFS 30:42

1 Using Kafka-Leader-Election to Improve Scalability and Performance 51:06

1 Real-Time Machine Learning and Smarter AI with Data Streaming 38:56

1 The Present and Future of Stream Processing 31:19

1 Top 6 Worst Apache Kafka JIRA Bugs 1:10:58

1 Learn How Stream-Processing Works The Simplest Way Possible 31:29

1 Building and Designing Events and Event Streams with Apache Kafka 53:06

1 Rethinking Apache Kafka Security and Account Management 41:23

1 Real-time Threat Detection Using Machine Learning and Apache Kafka 29:18

1 Improving Apache Kafka Scalability and Elasticity with Tiered Storage 29:32

1 Decoupling with Event-Driven Architecture 38:38

1 If Streaming Is the Answer, Why Are We Still Doing Batch? 43:58

1 Security for Real-Time Data Stream Processing with Confluent Cloud 48:33

1 Running Apache Kafka in Production 58:44

1 Build a Real Time AI Data Platform with Apache Kafka 37:18

1 Optimizing Apache JVMs for Apache Kafka 1:11:42


1 Application Data Streaming with Apache Kafka and Swim 39:10

1 International Podcast Day - Apache Kafka Edition | Streaming Audio Special 1:02:22


1 Real-Time Stream Processing, Monitoring, and Analytics With Apache Kafka 34:07

1 Reddit Sentiment Analysis with Apache Kafka-Based Microservices 35:23

1 Capacity Planning Your Apache Kafka Cluster 1:01:54

1 Streaming Real-Time Sporting Analytics for World Table Tennis 34:29

1 Real-Time Event Distribution with Data Mesh 48:59

1 Apache Kafka Security Best Practices 39:10

1 What Could Go Wrong with a Kafka JDBC Connector? 41:10

1 Apache Kafka Networking with Confluent Cloud 37:22

1 Event-Driven Systems and Agile Operations 53:22

1 Streaming Analytics and Real-Time Signal Processing with Apache Kafka 1:06:33

1 Blockchain Data Integration with Apache Kafka 50:59

1 Automating Multi-Cloud Apache Kafka Cluster Rollouts 48:29

1 Common Apache Kafka Mistakes to Avoid 1:09:43
ברוכים הבאים אל Player FM!
Player FM סורק את האינטרנט עבור פודקאסטים באיכות גבוהה בשבילכם כדי שתהנו מהם כרגע. זה יישום הפודקאסט הטוב ביותר והוא עובד על אנדרואיד, iPhone ואינטרנט. הירשמו לסנכרון מנויים במכשירים שונים.