Artwork

תוכן מסופק על ידי Kostas Pardalis, Nitay Joffe. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Kostas Pardalis, Nitay Joffe או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.
Player FM - אפליקציית פודקאסט
התחל במצב לא מקוון עם האפליקציה Player FM !

Optimizing SQL with LLMs: Building Verified AI Systems at Espresso AI with Ben Lerner

1:06:04
 
שתפו
 

Manage episode 459126947 series 3594857
תוכן מסופק על ידי Kostas Pardalis, Nitay Joffe. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Kostas Pardalis, Nitay Joffe או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.

In this episode, we chat with Ben, founder of Espresso AI, about his journey from building Excel Python integrations to optimizing data warehouse compute costs.

We explore his experience at companies like Uber and Google, where he worked on everything from distributed systems to ML and storage infrastructure.

We learn about the evolution of his latest venture, which started as a C++ compiler optimization project and transformed into a system for optimizing Snowflake workloads using ML.

Ben shares insights about applying LLMs to SQL optimization, the challenges of verified code transformation, and the importance of formal verification in ML systems. Finally, we discuss his practical approach to choosing ML models and the critical lesson he learned about talking to users before building products.

Chapters

00:00 Ben's Journey: From Startups to Big Tech
13:00 The Importance of Timing in Entrepreneurship
19:22 Consulting Insights: Learning from Clients
23:32 Transitioning to Big Tech: Experiences at Uber and Google
30:58 The Future of AI: End-to-End Systems and Data Utilization
35:53 Transitioning Between Domains: From ML to Distributed Systems
44:24 Espresso's Mission: Optimizing SQL with ML
51:26 The Future of Code Optimization and AI

Click here to view the episode transcript.

  continue reading

22 פרקים

Artwork
iconשתפו
 
Manage episode 459126947 series 3594857
תוכן מסופק על ידי Kostas Pardalis, Nitay Joffe. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Kostas Pardalis, Nitay Joffe או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.

In this episode, we chat with Ben, founder of Espresso AI, about his journey from building Excel Python integrations to optimizing data warehouse compute costs.

We explore his experience at companies like Uber and Google, where he worked on everything from distributed systems to ML and storage infrastructure.

We learn about the evolution of his latest venture, which started as a C++ compiler optimization project and transformed into a system for optimizing Snowflake workloads using ML.

Ben shares insights about applying LLMs to SQL optimization, the challenges of verified code transformation, and the importance of formal verification in ML systems. Finally, we discuss his practical approach to choosing ML models and the critical lesson he learned about talking to users before building products.

Chapters

00:00 Ben's Journey: From Startups to Big Tech
13:00 The Importance of Timing in Entrepreneurship
19:22 Consulting Insights: Learning from Clients
23:32 Transitioning to Big Tech: Experiences at Uber and Google
30:58 The Future of AI: End-to-End Systems and Data Utilization
35:53 Transitioning Between Domains: From ML to Distributed Systems
44:24 Espresso's Mission: Optimizing SQL with ML
51:26 The Future of Code Optimization and AI

Click here to view the episode transcript.

  continue reading

22 פרקים

כל הפרקים

×
 
Loading …

ברוכים הבאים אל Player FM!

Player FM סורק את האינטרנט עבור פודקאסטים באיכות גבוהה בשבילכם כדי שתהנו מהם כרגע. זה יישום הפודקאסט הטוב ביותר והוא עובד על אנדרואיד, iPhone ואינטרנט. הירשמו לסנכרון מנויים במכשירים שונים.

 

מדריך עזר מהיר

האזן לתוכנית הזו בזמן שאתה חוקר
הפעלה