Artwork

תוכן מסופק על ידי Anchormen. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Anchormen או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.
Player FM - אפליקציית פודקאסט
התחל במצב לא מקוון עם האפליקציה Player FM !

Is A.I. better at avoiding bias?

51:15
 
שתפו
 

Manage episode 343942146 series 3238641
תוכן מסופק על ידי Anchormen. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Anchormen או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.

This podcast takes off with Jeroen and Ron talking about how algorithms can become biased and they discuss this on the basis of the gender bias hiring example. How can you avoid black box algorithms and force the neural network to represent its decision making process?

Next, they touch upon the accuracy of face and emotion recognition and how this relates to the 'dream' of Artificial General Intelligence (AGI). Can machines actually point into places where humans didn't go yet? (Spoiler: AlphaGo Zero)

What can companies learn from this: who takes the responsibility to avoid bias and to have a balanced, unbiased data (training) set? Jeroen and Ron explain why Precision and Recall are better metrics (over accuracy) to check whether your algorithm or data set is unbiased or not. And how can recommendation engines combined with post-processing help avoid collaborative filtering.

  continue reading

8 פרקים

Artwork
iconשתפו
 
Manage episode 343942146 series 3238641
תוכן מסופק על ידי Anchormen. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Anchormen או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.

This podcast takes off with Jeroen and Ron talking about how algorithms can become biased and they discuss this on the basis of the gender bias hiring example. How can you avoid black box algorithms and force the neural network to represent its decision making process?

Next, they touch upon the accuracy of face and emotion recognition and how this relates to the 'dream' of Artificial General Intelligence (AGI). Can machines actually point into places where humans didn't go yet? (Spoiler: AlphaGo Zero)

What can companies learn from this: who takes the responsibility to avoid bias and to have a balanced, unbiased data (training) set? Jeroen and Ron explain why Precision and Recall are better metrics (over accuracy) to check whether your algorithm or data set is unbiased or not. And how can recommendation engines combined with post-processing help avoid collaborative filtering.

  continue reading

8 פרקים

כל הפרקים

×
 
Loading …

ברוכים הבאים אל Player FM!

Player FM סורק את האינטרנט עבור פודקאסטים באיכות גבוהה בשבילכם כדי שתהנו מהם כרגע. זה יישום הפודקאסט הטוב ביותר והוא עובד על אנדרואיד, iPhone ואינטרנט. הירשמו לסנכרון מנויים במכשירים שונים.

 

מדריך עזר מהיר

האזן לתוכנית הזו בזמן שאתה חוקר
הפעלה