Artwork

תוכן מסופק על ידי TWIML and Sam Charrington. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי TWIML and Sam Charrington או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.
Player FM - אפליקציית פודקאסט
התחל במצב לא מקוון עם האפליקציה Player FM !

Dynamic Token Merging for Efficient Byte-level Language Models with Julie Kallini - #724

50:32
 
שתפו
 

Manage episode 473104756 series 2355587
תוכן מסופק על ידי TWIML and Sam Charrington. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי TWIML and Sam Charrington או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.

Today, we're joined by Julie Kallini, PhD student at Stanford University to discuss her recent papers, “MrT5: Dynamic Token Merging for Efficient Byte-level Language Models” and “Mission: Impossible Language Models.” For the MrT5 paper, we explore the importance and failings of tokenization in large language models—including inefficient compression rates for under-resourced languages—and dig into byte-level modeling as an alternative. We discuss the architecture of MrT5, its ability to learn language-specific compression rates, its performance on multilingual benchmarks and character-level manipulation tasks, and its performance and efficiency. For the “Mission: Impossible Language Models” paper, we review the core idea behind the research, the definition and creation of impossible languages, the creation of impossible language training datasets, and explore the bias of language model architectures towards natural language.

The complete show notes for this episode can be found at https://twimlai.com/go/724.

  continue reading

774 פרקים

Artwork
iconשתפו
 
Manage episode 473104756 series 2355587
תוכן מסופק על ידי TWIML and Sam Charrington. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי TWIML and Sam Charrington או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.

Today, we're joined by Julie Kallini, PhD student at Stanford University to discuss her recent papers, “MrT5: Dynamic Token Merging for Efficient Byte-level Language Models” and “Mission: Impossible Language Models.” For the MrT5 paper, we explore the importance and failings of tokenization in large language models—including inefficient compression rates for under-resourced languages—and dig into byte-level modeling as an alternative. We discuss the architecture of MrT5, its ability to learn language-specific compression rates, its performance on multilingual benchmarks and character-level manipulation tasks, and its performance and efficiency. For the “Mission: Impossible Language Models” paper, we review the core idea behind the research, the definition and creation of impossible languages, the creation of impossible language training datasets, and explore the bias of language model architectures towards natural language.

The complete show notes for this episode can be found at https://twimlai.com/go/724.

  continue reading

774 פרקים

Tous les épisodes

×
 
Loading …

ברוכים הבאים אל Player FM!

Player FM סורק את האינטרנט עבור פודקאסטים באיכות גבוהה בשבילכם כדי שתהנו מהם כרגע. זה יישום הפודקאסט הטוב ביותר והוא עובד על אנדרואיד, iPhone ואינטרנט. הירשמו לסנכרון מנויים במכשירים שונים.

 

מדריך עזר מהיר

האזן לתוכנית הזו בזמן שאתה חוקר
הפעלה