התחל במצב לא מקוון עם האפליקציה Player FM !
ML Model Fairness: Measuring and Mitigating Algorithmic Disparities; With Guest: Nick Schmidt
Manage episode 375063826 series 3461851
This week we’re talking about the role of fairness in AI/ML. It is becoming increasingly apparent that incorporating fairness into our AI systems and machine learning models while mitigating bias and potential harms is a critical challenge. Not only that, it’s a challenge that demands a collective effort to ensure the responsible, secure, and equitable development of AI and machine learning systems.
But what does this actually mean in practice? To find out, we spoke with Nick Schmidt, the Chief Technology and Innovation Officer at SolasAI. In this week’s episode, Nick reviews some key principles related to model governance and fairness, from things like accountability and ownership all the way to model deployment and monitoring.
He also discusses real life examples of when machine learning algorithms have demonstrated bias and disparity, along with how those outcomes could be harmful to individuals or groups.
Later in the episode, Nick offers some insightful advice for organizations who are assessing their AI security risk related to algorithmic disparities and unfair models.
Additional tools and resources to check out:
AI Radar
ModelScan
NB Defense
Thanks for checking out the MLSecOps Podcast! Get involved with the MLSecOps Community and find more resources at https://community.mlsecops.com.
Additional tools and resources to check out:
Protect AI Guardian: Zero Trust for ML Models
Recon: Automated Red Teaming for GenAI
Protect AI’s ML Security-Focused Open Source Tools
LLM Guard Open Source Security Toolkit for LLM Interactions
Huntr - The World's First AI/Machine Learning Bug Bounty Platform
46 פרקים
Manage episode 375063826 series 3461851
This week we’re talking about the role of fairness in AI/ML. It is becoming increasingly apparent that incorporating fairness into our AI systems and machine learning models while mitigating bias and potential harms is a critical challenge. Not only that, it’s a challenge that demands a collective effort to ensure the responsible, secure, and equitable development of AI and machine learning systems.
But what does this actually mean in practice? To find out, we spoke with Nick Schmidt, the Chief Technology and Innovation Officer at SolasAI. In this week’s episode, Nick reviews some key principles related to model governance and fairness, from things like accountability and ownership all the way to model deployment and monitoring.
He also discusses real life examples of when machine learning algorithms have demonstrated bias and disparity, along with how those outcomes could be harmful to individuals or groups.
Later in the episode, Nick offers some insightful advice for organizations who are assessing their AI security risk related to algorithmic disparities and unfair models.
Additional tools and resources to check out:
AI Radar
ModelScan
NB Defense
Thanks for checking out the MLSecOps Podcast! Get involved with the MLSecOps Community and find more resources at https://community.mlsecops.com.
Additional tools and resources to check out:
Protect AI Guardian: Zero Trust for ML Models
Recon: Automated Red Teaming for GenAI
Protect AI’s ML Security-Focused Open Source Tools
LLM Guard Open Source Security Toolkit for LLM Interactions
Huntr - The World's First AI/Machine Learning Bug Bounty Platform
46 פרקים
Semua episod
×
1 AI Security: Map It, Manage It, Master It 41:18

1 Agentic AI: Tackling Data, Security, and Compliance Risks 23:22

1 AI Vulnerabilities: ML Supply Chains to LLM and Agent Exploits 24:08

1 Implementing Enterprise AI Governance: Balancing Ethics, Innovation & Risk for Business Success 38:39

1 Unpacking Generative AI Red Teaming and Practical Security Solutions 51:53

1 AI Security: Vulnerability Detection and Hidden Model File Risks 38:19

1 AI Governance Essentials: Empowering Procurement Teams to Navigate AI Risk 37:41

1 Crossroads: AI, Cybersecurity, and How to Prepare for What's Next 33:15

1 AI Beyond the Hype: Lessons from Cloud on Risk and Security 41:06

1 Generative AI Prompt Hacking and Its Impact on AI Security & Safety 31:59

1 The MLSecOps Podcast Season 2 Finale 40:54

1 Exploring Generative AI Risk Assessment and Regulatory Compliance 37:37

1 MLSecOps Culture: Considerations for AI Development and Security Teams 38:44

1 Practical Offensive and Adversarial ML for Red Teams 35:24

1 Expert Talk from RSA Conference: Securing Generative AI 25:42
ברוכים הבאים אל Player FM!
Player FM סורק את האינטרנט עבור פודקאסטים באיכות גבוהה בשבילכם כדי שתהנו מהם כרגע. זה יישום הפודקאסט הטוב ביותר והוא עובד על אנדרואיד, iPhone ואינטרנט. הירשמו לסנכרון מנויים במכשירים שונים.