Player FM - Internet Radio Done Right
54 subscribers
Checked 3M ago
הוסף לפני four שנים
תוכן מסופק על ידי Charles M Wood. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Charles M Wood או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.
Player FM - אפליקציית פודקאסט
התחל במצב לא מקוון עם האפליקציה Player FM !
התחל במצב לא מקוון עם האפליקציה Player FM !
Navigating Common Pitfalls in Data Science: Lessons from Pierpaolo Hipolito - ML 183
Manage episode 462892161 series 2977446
תוכן מסופק על ידי Charles M Wood. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Charles M Wood או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.
Welcome to another insightful episode of Top End Devs, where we delve into the fascinating world of machine learning and data science. In this episode, host Charles Max Wood is joined by special guest Pierpaolo Hipolito, a data scientist at the SAS Institute in the UK. Together, they explore the intriguing paradoxes of data science, discussing how these paradoxes can impact the accuracy of machine learning models and providing insights on how to mitigate them.
Pierpaolo shares his expertise on causal reasoning in machine learning, drawing from his master's research and contributions to Towards Data Science and other notable publications. He elaborates on the complexities of data modeling during the early stages of the COVID-19 pandemic, highlighting the use of simulation and synthetic data to address data sparsity.
Throughout the conversation, the focus remains on the importance of understanding the underlying system being modeled, the role of feature engineering, and strategies for avoiding common pitfalls in data science. Whether you are a seasoned data scientist or just starting out, this episode offers valuable perspectives on enhancing the reliability and interpretability of your machine learning models.
Tune in for a deep dive into the paradoxes of data science, practical advice on feature interaction, and the importance of accurate data representation in achieving meaningful insights.
Become a supporter of this podcast: https://www.spreaker.com/podcast/adventures-in-machine-learning--6102041/support.
…
continue reading
Pierpaolo shares his expertise on causal reasoning in machine learning, drawing from his master's research and contributions to Towards Data Science and other notable publications. He elaborates on the complexities of data modeling during the early stages of the COVID-19 pandemic, highlighting the use of simulation and synthetic data to address data sparsity.
Throughout the conversation, the focus remains on the importance of understanding the underlying system being modeled, the role of feature engineering, and strategies for avoiding common pitfalls in data science. Whether you are a seasoned data scientist or just starting out, this episode offers valuable perspectives on enhancing the reliability and interpretability of your machine learning models.
Tune in for a deep dive into the paradoxes of data science, practical advice on feature interaction, and the importance of accurate data representation in achieving meaningful insights.
Become a supporter of this podcast: https://www.spreaker.com/podcast/adventures-in-machine-learning--6102041/support.
209 פרקים
Manage episode 462892161 series 2977446
תוכן מסופק על ידי Charles M Wood. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Charles M Wood או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.
Welcome to another insightful episode of Top End Devs, where we delve into the fascinating world of machine learning and data science. In this episode, host Charles Max Wood is joined by special guest Pierpaolo Hipolito, a data scientist at the SAS Institute in the UK. Together, they explore the intriguing paradoxes of data science, discussing how these paradoxes can impact the accuracy of machine learning models and providing insights on how to mitigate them.
Pierpaolo shares his expertise on causal reasoning in machine learning, drawing from his master's research and contributions to Towards Data Science and other notable publications. He elaborates on the complexities of data modeling during the early stages of the COVID-19 pandemic, highlighting the use of simulation and synthetic data to address data sparsity.
Throughout the conversation, the focus remains on the importance of understanding the underlying system being modeled, the role of feature engineering, and strategies for avoiding common pitfalls in data science. Whether you are a seasoned data scientist or just starting out, this episode offers valuable perspectives on enhancing the reliability and interpretability of your machine learning models.
Tune in for a deep dive into the paradoxes of data science, practical advice on feature interaction, and the importance of accurate data representation in achieving meaningful insights.
Become a supporter of this podcast: https://www.spreaker.com/podcast/adventures-in-machine-learning--6102041/support.
…
continue reading
Pierpaolo shares his expertise on causal reasoning in machine learning, drawing from his master's research and contributions to Towards Data Science and other notable publications. He elaborates on the complexities of data modeling during the early stages of the COVID-19 pandemic, highlighting the use of simulation and synthetic data to address data sparsity.
Throughout the conversation, the focus remains on the importance of understanding the underlying system being modeled, the role of feature engineering, and strategies for avoiding common pitfalls in data science. Whether you are a seasoned data scientist or just starting out, this episode offers valuable perspectives on enhancing the reliability and interpretability of your machine learning models.
Tune in for a deep dive into the paradoxes of data science, practical advice on feature interaction, and the importance of accurate data representation in achieving meaningful insights.
Become a supporter of this podcast: https://www.spreaker.com/podcast/adventures-in-machine-learning--6102041/support.
209 פרקים
כל הפרקים
×ברוכים הבאים אל Player FM!
Player FM סורק את האינטרנט עבור פודקאסטים באיכות גבוהה בשבילכם כדי שתהנו מהם כרגע. זה יישום הפודקאסט הטוב ביותר והוא עובד על אנדרואיד, iPhone ואינטרנט. הירשמו לסנכרון מנויים במכשירים שונים.