Artwork

תוכן מסופק על ידי Daryl Taylor. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Daryl Taylor או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.
Player FM - אפליקציית פודקאסט
התחל במצב לא מקוון עם האפליקציה Player FM !

CSE805L10 - Understanding Neural Networks, Regularization, and K-Nearest Neighbors

16:31
 
שתפו
 

סדרה בארכיון ("עדכון לא פעיל" status)

When? This feed was archived on February 10, 2025 12:10 (6M ago). Last successful fetch was on October 14, 2024 06:04 (9M ago)

Why? עדכון לא פעיל status. השרתים שלנו לא הצליחו לאחזר פודקאסט חוקי לזמן ממושך.

What now? You might be able to find a more up-to-date version using the search function. This series will no longer be checked for updates. If you believe this to be in error, please check if the publisher's feed link below is valid and contact support to request the feed be restored or if you have any other concerns about this.

Manage episode 444544477 series 3603581
תוכן מסופק על ידי Daryl Taylor. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Daryl Taylor או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.

In this episode, Eugene Uwiragiye provides an in-depth exploration of key machine learning concepts, focusing on neural networks, regularization techniques (Lasso and Ridge regression), and the K-Nearest Neighbors (KNN) algorithm. The session includes explanations of mean and max functions in neural networks, the importance of regularization in preventing overfitting, and the role of feature selection in model optimization. Eugene also highlights practical advice on parameter tuning, such as the lambda value for regularization and selecting the number of neighbors in KNN.

Key Takeaways:

  • Neural Networks & Functions:
    • Explanation of "mean" and "max" functions used in neural networks.
    • Understanding L1 (Lasso) and L2 (Ridge) regularization to prevent overfitting by penalizing large coefficients.
  • Regularization Techniques:
    • Lasso (L1): Minimizes absolute values of coefficients, resulting in a sparse model.
    • Ridge (L2): Minimizes squared values of coefficients, making the model less sparse but still regularized.
    • Elastic Net combines L1 and L2 for optimal feature selection.
    • Choosing the right lambda value is crucial to balance bias and variance in your model.
  • K-Nearest Neighbors (KNN) Algorithm:
    • How KNN classifies data points based on the distance to its nearest neighbors.
    • The importance of selecting the right number of neighbors (K), usually an odd number to avoid ties.
    • Practical examples, such as determining whether a tomato is a fruit or vegetable based on features.

Quotes:

  • "Feature selection is important to automatically identify and remove unnecessary features."
  • "There’s nothing inherently better between Lasso and Ridge, but understanding the data helps in making the best decision."

Practical Tips:

  • When using Lasso or Ridge, start with small lambda values (e.g., 0.01 or 0.1) and adjust based on model performance.
  • Always perform manual feature selection, even when using models like neural networks that may automatically handle feature selection.
  • For KNN, selecting the right value of K is essential for classification accuracy; too few or too many neighbors can impact performance.

Resources Mentioned:

  • Scikit-learn for model implementation in Python.
  • L1 and L2 regularization as part of regression techniques.
  continue reading

20 פרקים

Artwork
iconשתפו
 

סדרה בארכיון ("עדכון לא פעיל" status)

When? This feed was archived on February 10, 2025 12:10 (6M ago). Last successful fetch was on October 14, 2024 06:04 (9M ago)

Why? עדכון לא פעיל status. השרתים שלנו לא הצליחו לאחזר פודקאסט חוקי לזמן ממושך.

What now? You might be able to find a more up-to-date version using the search function. This series will no longer be checked for updates. If you believe this to be in error, please check if the publisher's feed link below is valid and contact support to request the feed be restored or if you have any other concerns about this.

Manage episode 444544477 series 3603581
תוכן מסופק על ידי Daryl Taylor. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Daryl Taylor או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.

In this episode, Eugene Uwiragiye provides an in-depth exploration of key machine learning concepts, focusing on neural networks, regularization techniques (Lasso and Ridge regression), and the K-Nearest Neighbors (KNN) algorithm. The session includes explanations of mean and max functions in neural networks, the importance of regularization in preventing overfitting, and the role of feature selection in model optimization. Eugene also highlights practical advice on parameter tuning, such as the lambda value for regularization and selecting the number of neighbors in KNN.

Key Takeaways:

  • Neural Networks & Functions:
    • Explanation of "mean" and "max" functions used in neural networks.
    • Understanding L1 (Lasso) and L2 (Ridge) regularization to prevent overfitting by penalizing large coefficients.
  • Regularization Techniques:
    • Lasso (L1): Minimizes absolute values of coefficients, resulting in a sparse model.
    • Ridge (L2): Minimizes squared values of coefficients, making the model less sparse but still regularized.
    • Elastic Net combines L1 and L2 for optimal feature selection.
    • Choosing the right lambda value is crucial to balance bias and variance in your model.
  • K-Nearest Neighbors (KNN) Algorithm:
    • How KNN classifies data points based on the distance to its nearest neighbors.
    • The importance of selecting the right number of neighbors (K), usually an odd number to avoid ties.
    • Practical examples, such as determining whether a tomato is a fruit or vegetable based on features.

Quotes:

  • "Feature selection is important to automatically identify and remove unnecessary features."
  • "There’s nothing inherently better between Lasso and Ridge, but understanding the data helps in making the best decision."

Practical Tips:

  • When using Lasso or Ridge, start with small lambda values (e.g., 0.01 or 0.1) and adjust based on model performance.
  • Always perform manual feature selection, even when using models like neural networks that may automatically handle feature selection.
  • For KNN, selecting the right value of K is essential for classification accuracy; too few or too many neighbors can impact performance.

Resources Mentioned:

  • Scikit-learn for model implementation in Python.
  • L1 and L2 regularization as part of regression techniques.
  continue reading

20 פרקים

כל הפרקים

×
 
Loading …

ברוכים הבאים אל Player FM!

Player FM סורק את האינטרנט עבור פודקאסטים באיכות גבוהה בשבילכם כדי שתהנו מהם כרגע. זה יישום הפודקאסט הטוב ביותר והוא עובד על אנדרואיד, iPhone ואינטרנט. הירשמו לסנכרון מנויים במכשירים שונים.

 

מדריך עזר מהיר

האזן לתוכנית הזו בזמן שאתה חוקר
הפעלה