

When? This feed was archived on February 10, 2025 12:10 (
Why? עדכון לא פעיל status. השרתים שלנו לא הצליחו לאחזר פודקאסט חוקי לזמן ממושך.
What now? You might be able to find a more up-to-date version using the search function. This series will no longer be checked for updates. If you believe this to be in error, please check if the publisher's feed link below is valid and contact support to request the feed be restored or if you have any other concerns about this.
In this episode, Eugene Uwiragiye provides an in-depth exploration of key machine learning concepts, focusing on neural networks, regularization techniques (Lasso and Ridge regression), and the K-Nearest Neighbors (KNN) algorithm. The session includes explanations of mean and max functions in neural networks, the importance of regularization in preventing overfitting, and the role of feature selection in model optimization. Eugene also highlights practical advice on parameter tuning, such as the lambda value for regularization and selecting the number of neighbors in KNN.
Key Takeaways:
Quotes:
Practical Tips:
Resources Mentioned:
20 פרקים
When?
This feed was archived on February 10, 2025 12:10 (
Why? עדכון לא פעיל status. השרתים שלנו לא הצליחו לאחזר פודקאסט חוקי לזמן ממושך.
What now? You might be able to find a more up-to-date version using the search function. This series will no longer be checked for updates. If you believe this to be in error, please check if the publisher's feed link below is valid and contact support to request the feed be restored or if you have any other concerns about this.
In this episode, Eugene Uwiragiye provides an in-depth exploration of key machine learning concepts, focusing on neural networks, regularization techniques (Lasso and Ridge regression), and the K-Nearest Neighbors (KNN) algorithm. The session includes explanations of mean and max functions in neural networks, the importance of regularization in preventing overfitting, and the role of feature selection in model optimization. Eugene also highlights practical advice on parameter tuning, such as the lambda value for regularization and selecting the number of neighbors in KNN.
Key Takeaways:
Quotes:
Practical Tips:
Resources Mentioned:
20 פרקים
Player FM סורק את האינטרנט עבור פודקאסטים באיכות גבוהה בשבילכם כדי שתהנו מהם כרגע. זה יישום הפודקאסט הטוב ביותר והוא עובד על אנדרואיד, iPhone ואינטרנט. הירשמו לסנכרון מנויים במכשירים שונים.