CSE805L11 - Understanding Distance Metrics and K-Nearest Neighbors (KNN) in Machine Learning
סדרה בארכיון ("עדכון לא פעיל" status)
When? This feed was archived on February 10, 2025 12:10 (
Why? עדכון לא פעיל status. השרתים שלנו לא הצליחו לאחזר פודקאסט חוקי לזמן ממושך.
What now? You might be able to find a more up-to-date version using the search function. This series will no longer be checked for updates. If you believe this to be in error, please check if the publisher's feed link below is valid and contact support to request the feed be restored or if you have any other concerns about this.
Manage episode 444544478 series 3603581
In this episode, Eugene Uwiragiye delves deep into the world of machine learning, focusing on one of the most essential algorithms: K-Nearest Neighbors (KNN). The discussion centers around various types of distance metrics used in clustering and classification, including Euclidean and Manhattan distances, and their importance in determining nearest neighbors in data sets.
Listeners will gain insight into:
- How distance metrics like Euclidean and Manhattan work.
- The four key properties that define a distance metric.
- The significance of distance in KNN and its role in data analysis.
- Choosing the right value for "K" and the trade-offs between big picture analysis and focusing on details.
Key Takeaways:
- Distance Metrics: Explore how Euclidean and Manhattan distances are calculated and used in KNN to determine proximity between data points.
- Properties of a Distance Metric: Eugene outlines the four fundamental properties any valid distance metric should have, including non-negativity and triangular inequality.
- Choosing K in KNN: Learn how the choice of "K" affects the performance of KNN, with a balance between the number of neighbors and prediction accuracy.
- Practical Example: Eugene walks through a practical application of KNN using the Iris dataset, showcasing how different values of "K" influence classification accuracy.
Mentioned Tools & Resources:
- Python’s Scikit-learn library
- The Iris dataset for practicing KNN
- Elbow method for determining the optimal value of "K"
Call to Action:
Got a question about KNN or machine learning in general? Reach out to us on [Insert Contact Info]. Don’t forget to subscribe and leave a review!
20 פרקים