Artwork

תוכן מסופק על ידי Aaron Francis and Try Hard Studios. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Aaron Francis and Try Hard Studios או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.
Player FM - אפליקציית פודקאסט
התחל במצב לא מקוון עם האפליקציה Player FM !

Building search for AI systems with Chroma CTO Hammad Bashir

1:06:43
 
שתפו
 

Manage episode 524914090 series 3579868
תוכן מסופק על ידי Aaron Francis and Try Hard Studios. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Aaron Francis and Try Hard Studios או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.

Hammad Bashir, CTO of Chroma, joins the show to break down how modern vector search systems are actually built from local, embedded databases to massively distributed, object-storage-backed architectures. We dig into Chroma’s shared local-to-cloud API, log-structured storage on object stores, hybrid search, and why retrieval-augmented generation (RAG) isn’t going anywhere.

Follow Hammad:
Twitter/X: https://twitter.com/HammadTime
LinkedIn: https://www.linkedin.com/in/hbashir
Chroma: https://trychroma.com

Follow Aaron:
Twitter/X: https://twitter.com/aarondfrancis
Database School: https://databaseschool.com
Database School YouTube Channel: https://www.youtube.com/@UCT3XN4RtcFhmrWl8tf_o49g (Subscribe today)
LinkedIn: https://www.linkedin.com/in/aarondfrancis
Website: https://aaronfrancis.com - find articles, podcasts, courses, and more.

Chapters:
00:00 – Introduction From high-school ASICs to CTO of Chroma
01:04 – Hammad’s background and why vector search stuck
03:01 – Why Chroma has one API for local and distributed systems
05:37 – Local experimentation vs production AI workflows
08:03 – What “unprincipled data” means in machine learning
10:31 – From computer vision to retrieval for LLMs
13:00 – Exploratory data analysis and why looking at data still matters
16:38 – Promoting data from local to Chroma Cloud
19:26 – Why Chroma is built on object storage
20:27 – Write-ahead logs, batching, and durability
26:56 – Compaction, inverted indexes, and storage layout
29:26 – Strong consistency and reading from the log
34:12 – How queries are routed and executed
37:00 – Hybrid search: vectors, full-text, and metadata
41:03 – Chunking, embeddings, and retrieval boundaries
43:22 – Agentic search and letting models drive retrieval
45:01 – Is RAG dead? A grounded explanation
48:24 – Why context windows don’t replace search
56:20 – Context rot and why retrieval reduces confusion
01:00:19 – Faster models and the future of search stacks
01:02:25 – Who Chroma is for and when it’s a great fit
01:04:25 – Hiring, team culture, and where to follow Chroma

  continue reading

29 פרקים

Artwork
iconשתפו
 
Manage episode 524914090 series 3579868
תוכן מסופק על ידי Aaron Francis and Try Hard Studios. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Aaron Francis and Try Hard Studios או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.

Hammad Bashir, CTO of Chroma, joins the show to break down how modern vector search systems are actually built from local, embedded databases to massively distributed, object-storage-backed architectures. We dig into Chroma’s shared local-to-cloud API, log-structured storage on object stores, hybrid search, and why retrieval-augmented generation (RAG) isn’t going anywhere.

Follow Hammad:
Twitter/X: https://twitter.com/HammadTime
LinkedIn: https://www.linkedin.com/in/hbashir
Chroma: https://trychroma.com

Follow Aaron:
Twitter/X: https://twitter.com/aarondfrancis
Database School: https://databaseschool.com
Database School YouTube Channel: https://www.youtube.com/@UCT3XN4RtcFhmrWl8tf_o49g (Subscribe today)
LinkedIn: https://www.linkedin.com/in/aarondfrancis
Website: https://aaronfrancis.com - find articles, podcasts, courses, and more.

Chapters:
00:00 – Introduction From high-school ASICs to CTO of Chroma
01:04 – Hammad’s background and why vector search stuck
03:01 – Why Chroma has one API for local and distributed systems
05:37 – Local experimentation vs production AI workflows
08:03 – What “unprincipled data” means in machine learning
10:31 – From computer vision to retrieval for LLMs
13:00 – Exploratory data analysis and why looking at data still matters
16:38 – Promoting data from local to Chroma Cloud
19:26 – Why Chroma is built on object storage
20:27 – Write-ahead logs, batching, and durability
26:56 – Compaction, inverted indexes, and storage layout
29:26 – Strong consistency and reading from the log
34:12 – How queries are routed and executed
37:00 – Hybrid search: vectors, full-text, and metadata
41:03 – Chunking, embeddings, and retrieval boundaries
43:22 – Agentic search and letting models drive retrieval
45:01 – Is RAG dead? A grounded explanation
48:24 – Why context windows don’t replace search
56:20 – Context rot and why retrieval reduces confusion
01:00:19 – Faster models and the future of search stacks
01:02:25 – Who Chroma is for and when it’s a great fit
01:04:25 – Hiring, team culture, and where to follow Chroma

  continue reading

29 פרקים

모든 에피소드

×
 
Loading …

ברוכים הבאים אל Player FM!

Player FM סורק את האינטרנט עבור פודקאסטים באיכות גבוהה בשבילכם כדי שתהנו מהם כרגע. זה יישום הפודקאסט הטוב ביותר והוא עובד על אנדרואיד, iPhone ואינטרנט. הירשמו לסנכרון מנויים במכשירים שונים.

 

מדריך עזר מהיר

האזן לתוכנית הזו בזמן שאתה חוקר
הפעלה