Artwork

תוכן מסופק על ידי Kris Jenkins. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Kris Jenkins או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.
Player FM - אפליקציית פודקאסט
התחל במצב לא מקוון עם האפליקציה Player FM !

Semantic Search: A Deep Dive Into Vector Databases (with Zain Hasan)

1:02:00
 
שתפו
 

Manage episode 380205781 series 3476072
תוכן מסופק על ידי Kris Jenkins. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Kris Jenkins או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.

As interesting and useful as LLMs (Large Language Models) are proving, they have a severe limitation: they only know about the information they were trained on. If you train it on a snapshot of the internet from 2023, it’ll think it’s 2023 forever. So what do you do if you want to teach it some new information, but don’t want to burn a million AWS credits to get there?

In exploring that answer, we dive deep into the world of semantic search, augmented LLMs, and exactly how vector databases bridge that gap from the old dog to the new tricks. Along the way we’ll go from an easy trick to teach ChatGPT some new information by hand, all the way down to how vector databases store documents by their meaning, and how they efficiently search through those meanings to give custom, relevant answers to your questions.

--

Zain on Twitter: https://twitter.com/zainhasan6
Zain on LinkedIn: https://www.linkedin.com/in/zainhas
Kris on Twitter: https://twitter.com/krisajenkins
Kris on LinkedIn: https://www.linkedin.com/in/krisjenkins/
HNSW Paper: https://arxiv.org/abs/1603.09320
ImageBind - One Embedding Space To Bind Them All (pdf): https://openaccess.thecvf.com/content/CVPR2023/papers/Girdhar_ImageBind_One_Embedding_Space_To_Bind_Them_All_CVPR_2023_paper.pdf
Weaviate: https://weaviate.io/
Source: https://github.com/weaviate/weaviate
Examples: https://github.com/weaviate/weaviate-examples
Community Links: https://forum.weaviate.io/ and https://weaviate.io/slack
--
#vectordb #vectordatabase #semanticsearch #openai #chatgpt #weaviate #knn

  continue reading

101 פרקים

Artwork
iconשתפו
 
Manage episode 380205781 series 3476072
תוכן מסופק על ידי Kris Jenkins. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Kris Jenkins או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.

As interesting and useful as LLMs (Large Language Models) are proving, they have a severe limitation: they only know about the information they were trained on. If you train it on a snapshot of the internet from 2023, it’ll think it’s 2023 forever. So what do you do if you want to teach it some new information, but don’t want to burn a million AWS credits to get there?

In exploring that answer, we dive deep into the world of semantic search, augmented LLMs, and exactly how vector databases bridge that gap from the old dog to the new tricks. Along the way we’ll go from an easy trick to teach ChatGPT some new information by hand, all the way down to how vector databases store documents by their meaning, and how they efficiently search through those meanings to give custom, relevant answers to your questions.

--

Zain on Twitter: https://twitter.com/zainhasan6
Zain on LinkedIn: https://www.linkedin.com/in/zainhas
Kris on Twitter: https://twitter.com/krisajenkins
Kris on LinkedIn: https://www.linkedin.com/in/krisjenkins/
HNSW Paper: https://arxiv.org/abs/1603.09320
ImageBind - One Embedding Space To Bind Them All (pdf): https://openaccess.thecvf.com/content/CVPR2023/papers/Girdhar_ImageBind_One_Embedding_Space_To_Bind_Them_All_CVPR_2023_paper.pdf
Weaviate: https://weaviate.io/
Source: https://github.com/weaviate/weaviate
Examples: https://github.com/weaviate/weaviate-examples
Community Links: https://forum.weaviate.io/ and https://weaviate.io/slack
--
#vectordb #vectordatabase #semanticsearch #openai #chatgpt #weaviate #knn

  continue reading

101 פרקים

All episodes

×
 
Loading …

ברוכים הבאים אל Player FM!

Player FM סורק את האינטרנט עבור פודקאסטים באיכות גבוהה בשבילכם כדי שתהנו מהם כרגע. זה יישום הפודקאסט הטוב ביותר והוא עובד על אנדרואיד, iPhone ואינטרנט. הירשמו לסנכרון מנויים במכשירים שונים.

 

מדריך עזר מהיר

האזן לתוכנית הזו בזמן שאתה חוקר
הפעלה