Artwork

תוכן מסופק על ידי Gareth Thomas. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Gareth Thomas או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.
Player FM - אפליקציית פודקאסט
התחל במצב לא מקוון עם האפליקציה Player FM !

Dexter Forecast & Trade Optimization Powered by AI

49:38
 
שתפו
 

Manage episode 410477019 series 3435244
תוכן מסופק על ידי Gareth Thomas. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Gareth Thomas או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.

In this podcast episode, we delve into the intricacies of power markets and energy forecasting with Tom Lemmens who has firsthand experience in the field. Starting his career at an energy company, our guest explains the complexities of short-term power markets, focusing on generation forecasting for wind and solar power, as well as price forecasting.
We learn about the crucial role of forecasting prices as a proxy for balancing the grid, and the importance of portfolio optimization in maximizing asset value. After transitioning from a data science consultant back to the energy sector, our guest became one of the early joiners at Dexter Energy, a company providing generation forecasting and trade optimization services.
Dexter Energy specializes in forecasting solar and wind power generation, along with short-term power prices, to help companies make informed trade strategies and optimize their assets. The guest highlights the significance of utilizing Python in their work and explains the process of translating data into expected power output using machine learning models.
Moreover, we explore the challenges and rapid changes in the energy transition, particularly in regions with increasing adoption of renewable energy sources like solar panels. Tom shares insights into the continuous evolution of their models and the technology stack used at Dexter Energy, including Python, Google Cloud, Airflow, and various databases.
Finally, we uncover the data sources for weather data, essential for accurate forecasting, and the iterative process of determining model usefulness through backtesting. This episode provides a comprehensive overview of the dynamic energy market and the vital role of data-driven solutions in optimizing energy trading strategies.

Support the show

Subscribe to mailing list here.

  continue reading

27 פרקים

Artwork
iconשתפו
 
Manage episode 410477019 series 3435244
תוכן מסופק על ידי Gareth Thomas. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Gareth Thomas או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.

In this podcast episode, we delve into the intricacies of power markets and energy forecasting with Tom Lemmens who has firsthand experience in the field. Starting his career at an energy company, our guest explains the complexities of short-term power markets, focusing on generation forecasting for wind and solar power, as well as price forecasting.
We learn about the crucial role of forecasting prices as a proxy for balancing the grid, and the importance of portfolio optimization in maximizing asset value. After transitioning from a data science consultant back to the energy sector, our guest became one of the early joiners at Dexter Energy, a company providing generation forecasting and trade optimization services.
Dexter Energy specializes in forecasting solar and wind power generation, along with short-term power prices, to help companies make informed trade strategies and optimize their assets. The guest highlights the significance of utilizing Python in their work and explains the process of translating data into expected power output using machine learning models.
Moreover, we explore the challenges and rapid changes in the energy transition, particularly in regions with increasing adoption of renewable energy sources like solar panels. Tom shares insights into the continuous evolution of their models and the technology stack used at Dexter Energy, including Python, Google Cloud, Airflow, and various databases.
Finally, we uncover the data sources for weather data, essential for accurate forecasting, and the iterative process of determining model usefulness through backtesting. This episode provides a comprehensive overview of the dynamic energy market and the vital role of data-driven solutions in optimizing energy trading strategies.

Support the show

Subscribe to mailing list here.

  continue reading

27 פרקים

כל הפרקים

×
 
Loading …

ברוכים הבאים אל Player FM!

Player FM סורק את האינטרנט עבור פודקאסטים באיכות גבוהה בשבילכם כדי שתהנו מהם כרגע. זה יישום הפודקאסט הטוב ביותר והוא עובד על אנדרואיד, iPhone ואינטרנט. הירשמו לסנכרון מנויים במכשירים שונים.

 

מדריך עזר מהיר

האזן לתוכנית הזו בזמן שאתה חוקר
הפעלה