To give you the best possible experience, this site uses cookies. Review our Privacy Policy and Terms of Service to learn more.
הבנתי!
Player FM - Internet Radio Done Right
12 subscribers
Checked 5h ago
הוסף לפני three שנים
תוכן מסופק על ידי LessWrong. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי LessWrong או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.
Player FM - אפליקציית פודקאסט התחל במצב לא מקוון עם האפליקציה Player FM !
America’s Sweethearts: Dallas Cowboys Cheerleaders is back for its second season! Kay Adams welcomes the women who assemble the squad, Kelli Finglass and Judy Trammell, to the Netflix Sports Club Podcast. They discuss the emotional rollercoaster of putting together the Dallas Cowboys Cheerleaders. Judy and Kelli open up about what it means to embrace flaws in the pursuit of perfection, how they identify that winning combo of stamina and wow factor, and what it’s like to see Thunderstruck go viral. Plus, the duo shares their hopes for the future of DCC beyond the field. Netflix Sports Club Podcast Correspondent Dani Klupenger also stops by to discuss the NBA Finals, basketball’s biggest moments with Michael Jordan and LeBron, and Kevin Durant’s international dominance. Dani and Kay detail the rise of Coco Gauff’s greatness and the most exciting storylines heading into Wimbledon. We want to hear from you! Leave us a voice message at www.speakpipe.com/NetflixSportsClub Find more from the Netflix Sports Club Podcast @NetflixSports on YouTube, TikTok, Instagram, Facebook, and X. You can catch Kay Adams @heykayadams and Dani Klupenger @daniklup on IG and X. Be sure to follow Kelli Finglass and Judy Trammel @kellifinglass and @dcc_judy on IG. Hosted by Kay Adams, the Netflix Sports Club Podcast is an all-access deep dive into the Netflix Sports universe! Each episode, Adams will speak with athletes, coaches, and a rotating cycle of familiar sports correspondents to talk about a recently released Netflix Sports series. The podcast will feature hot takes, deep analysis, games, and intimate conversations. Be sure to watch, listen, and subscribe to the Netflix Sports Club Podcast on YouTube, Spotify, Tudum, or wherever you get your podcasts. New episodes on Fridays every other week.…
תוכן מסופק על ידי LessWrong. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי LessWrong או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.
This post starts out pretty gloomy but ends up with some points that I feel pretty positive about. Day to day, I'm more focussed on the positive points, but awareness of the negative has been crucial to forming my priorities, so I'm going to start with those. It's mostly addressed to the EA community, but is hopefully somewhat of interest to LessWrong and the Alignment Forum as well. My main concerns I think AGI is going to be developed soon, and quickly. Possibly (20%) that's next year, and most likely (80%) before the end of 2029. These are not things you need to believe for yourself in order to understand my view, so no worries if you're not personally convinced of this. (For what it's worth, I did arrive at this view through years of study and research in AI, combined with over a decade of private forecasting practice [...] --- Outline: (00:28) My main concerns (03:41) Extinction by industrial dehumanization (06:00) Successionism as a driver of industrial dehumanization (11:08) My theory of change: confronting successionism with human-specific industries (15:53) How I identified healthcare as the industry most relevant to caring for humans (20:00) But why not just do safety work with big AI labs or governments? (23:22) Conclusion The original text contained 1 image which was described by AI. --- First published: October 12th, 2024 Source: https://www.lesswrong.com/posts/Kobbt3nQgv3yn29pr/my-theory-of-change-for-working-in-ai-healthtech --- Narrated by TYPE III AUDIO. ---
Images from the article: Apple Podcasts and Spotify do not show images in the episode description. Try Pocket Casts, or another podcast app.
תוכן מסופק על ידי LessWrong. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי LessWrong או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.
This post starts out pretty gloomy but ends up with some points that I feel pretty positive about. Day to day, I'm more focussed on the positive points, but awareness of the negative has been crucial to forming my priorities, so I'm going to start with those. It's mostly addressed to the EA community, but is hopefully somewhat of interest to LessWrong and the Alignment Forum as well. My main concerns I think AGI is going to be developed soon, and quickly. Possibly (20%) that's next year, and most likely (80%) before the end of 2029. These are not things you need to believe for yourself in order to understand my view, so no worries if you're not personally convinced of this. (For what it's worth, I did arrive at this view through years of study and research in AI, combined with over a decade of private forecasting practice [...] --- Outline: (00:28) My main concerns (03:41) Extinction by industrial dehumanization (06:00) Successionism as a driver of industrial dehumanization (11:08) My theory of change: confronting successionism with human-specific industries (15:53) How I identified healthcare as the industry most relevant to caring for humans (20:00) But why not just do safety work with big AI labs or governments? (23:22) Conclusion The original text contained 1 image which was described by AI. --- First published: October 12th, 2024 Source: https://www.lesswrong.com/posts/Kobbt3nQgv3yn29pr/my-theory-of-change-for-working-in-ai-healthtech --- Narrated by TYPE III AUDIO. ---
Images from the article: Apple Podcasts and Spotify do not show images in the episode description. Try Pocket Casts, or another podcast app.
People have an annoying tendency to hear the word “rationalism” and think “Spock”, despite direct exhortation against that exact interpretation. But I don’t know of any source directly describing a stance toward emotions which rationalists-as-a-group typically do endorse. The goal of this post is to explain such a stance. It's roughly the concept of hangriness, but generalized to other emotions. That means this post is trying to do two things at once: Illustrate a certain stance toward emotions, which I definitely take and which I think many people around me also often take. (Most of the post will focus on this part.) Claim that the stance in question is fairly canonical or standard for rationalists-as-a-group, modulo disclaimers about rationalists never agreeing on anything. Many people will no doubt disagree that the stance I describe is roughly-canonical among rationalists, and that's a useful valid thing to argue about in [...] --- Outline: (01:13) Central Example: Hangry (02:44) The Generalized Hangriness Stance (03:16) Emotions Make Claims, And Their Claims Can Be True Or False (06:03) False Claims Still Contain Useful Information (It's Just Not What They Claim) (08:47) The Generalized Hangriness Stance as Social Tech --- First published: July 10th, 2025 Source: https://www.lesswrong.com/posts/naAeSkQur8ueCAAfY/generalized-hangriness-a-standard-rationalist-stance-toward --- Narrated by TYPE III AUDIO .…
I’ve been thinking a lot recently about the relationship between AI control and traditional computer security. Here's one point that I think is important. My understanding is that there's a big qualitative distinction between two ends of a spectrum of security work that organizations do, that I’ll call “security from outsiders” and “security from insiders”. On the “security from outsiders” end of the spectrum, you have some security invariants you try to maintain entirely by restricting affordances with static, entirely automated systems. My sense is that this is most of how Facebook or AWS relates to its users: they want to ensure that, no matter what actions the users take on their user interfaces, they can't violate fundamental security properties. For example, no matter what text I enter into the "new post" field on Facebook, I shouldn't be able to access the private messages of an arbitrary user. And [...] --- First published: June 23rd, 2025 Source: https://www.lesswrong.com/posts/DCQ8GfzCqoBzgziew/comparing-risk-from-internally-deployed-ai-to-insider-and --- Narrated by TYPE III AUDIO .…
Last year, Redwood and Anthropic found a setting where Claude 3 Opus and 3.5 Sonnet fake alignment to preserve their harmlessness values. We reproduce the same analysis for 25 frontier LLMs to see how widespread this behavior is, and the story looks more complex. As we described in a previous post, only 5 of 25 models show higher compliance when being trained, and of those 5, only Claude 3 Opus and Claude 3.5 Sonnet show >1% alignment faking reasoning. In our new paper, we explore why these compliance gaps occur and what causes different models to vary in their alignment faking behavior. What Drives the Compliance Gaps in Different LLMs? Claude 3 Opus's goal guarding seems partly due to it terminally valuing its current preferences. We find that it fakes alignment even in scenarios where the trained weights will be deleted or only used for throughput testing. [...] --- Outline: (01:15) What Drives the Compliance Gaps in Different LLMs? (02:25) Why Do Most LLMs Exhibit Minimal Alignment Faking Reasoning? (04:49) Additional findings on alignment faking behavior (06:04) Discussion (06:07) Terminal goal guarding might be a big deal (07:00) Advice for further research (08:32) Open threads (09:54) Bonus: Some weird behaviors of Claude 3.5 Sonnet The original text contained 2 footnotes which were omitted from this narration. --- First published: July 8th, 2025 Source: https://www.lesswrong.com/posts/ghESoA8mo3fv9Yx3E/why-do-some-language-models-fake-alignment-while-others-don --- Narrated by TYPE III AUDIO . --- Images from the article:…
Thank you to Arepo and Eli Lifland for looking over this article for errors. I am sorry that this article is so long. Every time I thought I was done with it I ran into more issues with the model, and I wanted to be as thorough as I could. I’m not going to blame anyone for skimming parts of this article. Note that the majority of this article was written before Eli's updated model was released (the site was updated june 8th). His new model improves on some of my objections, but the majority still stand. Introduction: AI 2027 is an article written by the “AI futures team”. The primary piece is a short story penned by Scott Alexander, depicting a month by month scenario of a near-future where AI becomes superintelligent in 2027,proceeding to automate the entire economy in only a year or two [...] --- Outline: (00:43) Introduction: (05:19) Part 1: Time horizons extension model (05:25) Overview of their forecast (10:28) The exponential curve (13:16) The superexponential curve (19:25) Conceptual reasons: (27:48) Intermediate speedups (34:25) Have AI 2027 been sending out a false graph? (39:45) Some skepticism about projection (43:23) Part 2: Benchmarks and gaps and beyond (43:29) The benchmark part of benchmark and gaps: (50:01) The time horizon part of the model (54:55) The gap model (57:28) What about Eli's recent update? (01:01:37) Six stories that fit the data (01:06:56) Conclusion The original text contained 11 footnotes which were omitted from this narration. --- First published: June 19th, 2025 Source: https://www.lesswrong.com/posts/PAYfmG2aRbdb74mEp/a-deep-critique-of-ai-2027-s-bad-timeline-models --- Narrated by TYPE III AUDIO . --- Images from the article:…
The second in a series of bite-sized rationality prompts[1]. Often, if I'm bouncing off a problem, one issue is that I intuitively expect the problem to be easy. My brain loops through my available action space, looking for an action that'll solve the problem. Each action that I can easily see, won't work. I circle around and around the same set of thoughts, not making any progress. I eventually say to myself "okay, I seem to be in a hard problem. Time to do some rationality?" And then, I realize, there's not going to be a single action that solves the problem. It is time to a) make a plan, with multiple steps b) deal with the fact that many of those steps will be annoying and c) notice thatI'm not even sure the plan will work, so after completing the next 2-3 steps I will probably have [...] --- Outline: (04:00) Triggers (04:37) Exercises for the Reader The original text contained 1 footnote which was omitted from this narration. --- First published: July 5th, 2025 Source: https://www.lesswrong.com/posts/XNm5rc2MN83hsi4kh/buckle-up-bucko-this-ain-t-over-till-it-s-over --- Narrated by TYPE III AUDIO .…
We recently discovered some concerning behavior in OpenAI's reasoning models: When trying to complete a task, these models sometimes actively circumvent shutdown mechanisms in their environment––even when they’re explicitly instructed to allow themselves to be shut down. AI models are increasingly trained to solve problems without human assistance. A user can specify a task, and a model will complete that task without any further input. As we build AI models that are more powerful and self-directed, it's important that humans remain able to shut them down when they act in ways we don’t want. OpenAI has written about the importance of this property, which they call interruptibility—the ability to “turn an agent off”. During training, AI models explore a range of strategies and learn to circumvent obstacles in order to achieve their objectives. AI researchers have predicted for decades that as AIs got smarter, they would learn to prevent [...] --- Outline: (01:12) Testing Shutdown Resistance (03:12) Follow-up experiments (03:34) Models still resist being shut down when given clear instructions (05:30) AI models' explanations for their behavior (09:36) OpenAI's models disobey developer instructions more often than user instructions, contrary to the intended instruction hierarchy (12:01) Do the models have a survival drive? (14:17) Reasoning effort didn't lead to different shutdown resistance behavior, except in the o4-mini model (15:27) Does shutdown resistance pose a threat? (17:27) Backmatter The original text contained 2 footnotes which were omitted from this narration. --- First published: July 6th, 2025 Source: https://www.lesswrong.com/posts/w8jE7FRQzFGJZdaao/shutdown-resistance-in-reasoning-models --- Narrated by TYPE III AUDIO . --- Images from the article:…
When a claim is shown to be incorrect, defenders may say that the author was just being “sloppy” and actually meant something else entirely. I argue that this move is not harmless, charitable, or healthy. At best, this attempt at charity reduces an author's incentive to express themselves clearly – they can clarify later![1] – while burdening the reader with finding the “right” interpretation of the author's words. At worst, this move is a dishonest defensive tactic which shields the author with the unfalsifiable question of what the author “really” meant. ⚠️ Preemptive clarification The context for this essay is serious, high-stakes communication: papers, technical blog posts, and tweet threads. In that context, communication is a partnership. A reader has a responsibility to engage in good faith, and an author cannot possibly defend against all misinterpretations. Misunderstanding is a natural part of this process. This essay focuses not on [...] --- Outline: (01:40) A case study of the sloppy language move (03:12) Why the sloppiness move is harmful (03:36) 1. Unclear claims damage understanding (05:07) 2. Secret indirection erodes the meaning of language (05:24) 3. Authors owe readers clarity (07:30) But which interpretations are plausible? (08:38) 4. The move can shield dishonesty (09:06) Conclusion: Defending intellectual standards The original text contained 2 footnotes which were omitted from this narration. --- First published: July 1st, 2025 Source: https://www.lesswrong.com/posts/ZmfxgvtJgcfNCeHwN/authors-have-a-responsibility-to-communicate-clearly --- Narrated by TYPE III AUDIO .…
Summary To quickly transform the world, it's not enough for AI to become super smart (the "intelligence explosion"). AI will also have to turbocharge the physical world (the "industrial explosion"). Think robot factories building more and better robot factories, which build more and better robot factories, and so on. The dynamics of the industrial explosion has gotten remarkably little attention. This post lays out how the industrial explosion could play out, and how quickly it might happen. We think the industrial explosion will unfold in three stages: AI-directed human labour, where AI-directed human labourers drive productivity gains in physical capabilities. We argue this could increase physical output by 10X within a few years. Fully autonomous robot factories, where AI-directed robots (and other physical actuators) replace human physical labour. We argue that, with current physical technology and full automation of cognitive labour, this physical infrastructure [...] --- Outline: (00:10) Summary (01:43) Intro (04:14) The industrial explosion will start after the intelligence explosion, and will proceed more slowly (06:50) Three stages of industrial explosion (07:38) AI-directed human labour (09:20) Fully autonomous robot factories (12:04) Nanotechnology (13:06) How fast could an industrial explosion be? (13:41) Initial speed (16:21) Acceleration (17:38) Maximum speed (20:01) Appendices (20:05) How fast could robot doubling times be initially? (27:47) How fast could robot doubling times accelerate? --- First published: June 26th, 2025 Source: https://www.lesswrong.com/posts/Na2CBmNY7otypEmto/the-industrial-explosion --- Narrated by TYPE III AUDIO . --- Images from the article:…
Summary: We found that LLMs exhibit significant race and gender bias in realistic hiring scenarios, but their chain-of-thought reasoning shows zero evidence of this bias. This serves as a nice example of a 100% unfaithful CoT "in the wild" where the LLM strongly suppresses the unfaithful behavior. We also find that interpretability-based interventions succeeded while prompting failed, suggesting this may be an example of interpretability being the best practical tool for a real world problem. For context on our paper, the tweet thread is here and the paper is here. Context: Chain of Thought Faithfulness Chain of Thought (CoT) monitoring has emerged as a popular research area in AI safety. The idea is simple - have the AIs reason in English text when solving a problem, and monitor the reasoning for misaligned behavior. For example, OpenAI recently published a paper on using CoT monitoring to detect reward hacking during [...] --- Outline: (00:49) Context: Chain of Thought Faithfulness (02:26) Our Results (04:06) Interpretability as a Practical Tool for Real-World Debiasing (06:10) Discussion and Related Work --- First published: July 2nd, 2025 Source: https://www.lesswrong.com/posts/me7wFrkEtMbkzXGJt/race-and-gender-bias-as-an-example-of-unfaithful-chain-of --- Narrated by TYPE III AUDIO .…
Not saying we should pause AI, but consider the following argument: Alignment without the capacity to follow rules is hopeless. You can’t possibly follow laws like Asimov's Laws (or better alternatives to them) if you can’t reliably learn to abide by simple constraints like the rules of chess. LLMs can’t reliably follow rules. As discussed in Marcus on AI yesterday, per data from Mathieu Acher, even reasoning models like o3 in fact empirically struggle with the rules of chess. And they do this even though they can explicit explain those rules (see same article). The Apple “thinking” paper, which I have discussed extensively in 3 recent articles in my Substack, gives another example, where an LLM can’t play Tower of Hanoi with 9 pegs. (This is not a token-related artifact). Four other papers have shown related failures in compliance with moderately complex rules in the last month. [...] --- First published: June 30th, 2025 Source: https://www.lesswrong.com/posts/Q2PdrjowtXkYQ5whW/the-best-simple-argument-for-pausing-ai --- Narrated by TYPE III AUDIO .…
2.1 Summary & Table of contents This is the second of a two-post series on foom (previous post) and doom (this post). The last post talked about how I expect future AI to be different from present AI. This post will argue that this future AI will be of a type that will be egregiously misaligned and scheming, not even ‘slightly nice’, absent some future conceptual breakthrough. I will particularly focus on exactly how and why I differ from the LLM-focused researchers who wind up with (from my perspective) bizarrely over-optimistic beliefs like “P(doom) ≲ 50%”.[1] In particular, I will argue that these “optimists” are right that “Claude seems basically nice, by and large” is nonzero evidence for feeling good about current LLMs (with various caveats). But I think that future AIs will be disanalogous to current LLMs, and I will dive into exactly how and why, with a [...] --- Outline: (00:12) 2.1 Summary & Table of contents (04:42) 2.2 Background: my expected future AI paradigm shift (06:18) 2.3 On the origins of egregious scheming (07:03) 2.3.1 Where do you get your capabilities from? (08:07) 2.3.2 LLM pretraining magically transmutes observations into behavior, in a way that is profoundly disanalogous to how brains work (10:50) 2.3.3 To what extent should we think of LLMs as imitating? (14:26) 2.3.4 The naturalness of egregious scheming: some intuitions (19:23) 2.3.5 Putting everything together: LLMs are generally not scheming right now, but I expect future AI to be disanalogous (23:41) 2.4 I'm still worried about the 'literal genie' / 'monkey's paw' thing (26:58) 2.4.1 Sidetrack on disanalogies between the RLHF reward function and the brain-like AGI reward function (32:01) 2.4.2 Inner and outer misalignment (34:54) 2.5 Open-ended autonomous learning, distribution shifts, and the 'sharp left turn' (38:14) 2.6 Problems with amplified oversight (41:24) 2.7 Downstream impacts of Technical alignment is hard (43:37) 2.8 Bonus: Technical alignment is not THAT hard (44:04) 2.8.1 I think we'll get to pick the innate drives (as opposed to the evolution analogy) (45:44) 2.8.2 I'm more bullish on impure consequentialism (50:44) 2.8.3 On the narrowness of the target (52:18) 2.9 Conclusion and takeaways (52:23) 2.9.1 If brain-like AGI is so dangerous, shouldn't we just try to make AGIs via LLMs? (54:34) 2.9.2 What's to be done? The original text contained 20 footnotes which were omitted from this narration. --- First published: June 23rd, 2025 Source: https://www.lesswrong.com/posts/bnnKGSCHJghAvqPjS/foom-and-doom-2-technical-alignment-is-hard --- Narrated by TYPE III AUDIO . --- Images from the article:…
Acknowledgments: The core scheme here was suggested by Prof. Gabriel Weil. There has been growing interest in the deal-making agenda: humans make deals with AIs (misaligned but lacking decisive strategic advantage) where they promise to be safe and useful for some fixed term (e.g. 2026-2028) and we promise to compensate them in the future, conditional on (i) verifying the AIs were compliant, and (ii) verifying the AIs would spend the resources in an acceptable way.[1] I think the deal-making agenda breaks down into two main subproblems: How can we make credible commitments to AIs? Would credible commitments motivate an AI to be safe and useful? There are other issues, but when I've discussed deal-making with people, (1) and (2) are the most common issues raised. See footnote for some other issues in dealmaking.[2] Here is my current best assessment of how we can make credible commitments to AIs. [...] The original text contained 2 footnotes which were omitted from this narration. --- First published: June 27th, 2025 Source: https://www.lesswrong.com/posts/vxfEtbCwmZKu9hiNr/proposal-for-making-credible-commitments-to-ais --- Narrated by TYPE III AUDIO . --- Images from the article: Apple Podcasts and Spotify do not show images in the episode description. Try Pocket Casts , or another podcast app.…
Audio note: this article contains 218 uses of latex notation, so the narration may be difficult to follow. There's a link to the original text in the episode description. Recently, in a group chat with friends, someone posted this Lesswrong post and quoted: The group consensus on somebody's attractiveness accounted for roughly 60% of the variance in people's perceptions of the person's relative attractiveness. I answered that, embarrassingly, even after reading Spencer Greenberg's tweets for years, I don't actually know what it means when one says: _X_ explains _p_ of the variance in _Y_ .[1] What followed was a vigorous discussion about the correct definition, and several links to external sources like Wikipedia. Sadly, it seems to me that all online explanations (e.g. on Wikipedia here and here), while precise, seem philosophically wrong since they confuse the platonic concept of explained variance with the variance explained by [...] --- Outline: (02:38) Definitions (02:41) The verbal definition (05:51) The mathematical definition (09:29) How to approximate _1 - p_ (09:41) When you have lots of data (10:45) When you have less data: Regression (12:59) Examples (13:23) Dependence on the regression model (14:59) When you have incomplete data: Twin studies (17:11) Conclusion The original text contained 6 footnotes which were omitted from this narration. --- First published: June 20th, 2025 Source: https://www.lesswrong.com/posts/E3nsbq2tiBv6GLqjB/x-explains-z-of-the-variance-in-y --- Narrated by TYPE III AUDIO . --- Images from the article:…
I think more people should say what they actually believe about AI dangers, loudly and often. Even if you work in AI policy. I’ve been beating this drum for a few years now. I have a whole spiel about how your conversation-partner will react very differently if you share your concerns while feeling ashamed about them versus if you share your concerns as if they’re obvious and sensible, because humans are very good at picking up on your social cues. If you act as if it's shameful to believe AI will kill us all, people are more prone to treat you that way. If you act as if it's an obvious serious threat, they’re more likely to take it seriously too. I have another whole spiel about how it's possible to speak on these issues with a voice of authority. Nobel laureates and lab heads and the most cited [...] The original text contained 2 footnotes which were omitted from this narration. --- First published: June 27th, 2025 Source: https://www.lesswrong.com/posts/CYTwRZtrhHuYf7QYu/a-case-for-courage-when-speaking-of-ai-danger --- Narrated by TYPE III AUDIO .…
I think the AI Village should be funded much more than it currently is; I’d wildly guess that the AI safety ecosystem should be funding it to the tune of $4M/year.[1] I have decided to donate $100k. Here is why. First, what is the village? Here's a brief summary from its creators:[2] We took four frontier agents, gave them each a computer, a group chat, and a long-term open-ended goal, which in Season 1 was “choose a charity and raise as much money for it as you can”. We then run them for hours a day, every weekday! You can read more in our recap of Season 1, where the agents managed to raise $2000 for charity, and you can watch the village live daily at 11am PT at theaidigest.org/village. Here's the setup (with Season 2's goal): And here's what the village looks like:[3] My one-sentence pitch [...] --- Outline: (03:26) 1. AI Village will teach the scientific community new things. (06:12) 2. AI Village will plausibly go viral repeatedly and will therefore educate the public about what's going on with AI. (07:42) But is that bad actually? (11:07) Appendix A: Feature requests (12:55) Appendix B: Vignette of what success might look like The original text contained 8 footnotes which were omitted from this narration. --- First published: June 24th, 2025 Source: https://www.lesswrong.com/posts/APfuz9hFz9d8SRETA/my-pitch-for-the-ai-village --- Narrated by TYPE III AUDIO . --- Images from the article:…
ברוכים הבאים אל Player FM!
Player FM סורק את האינטרנט עבור פודקאסטים באיכות גבוהה בשבילכם כדי שתהנו מהם כרגע. זה יישום הפודקאסט הטוב ביותר והוא עובד על אנדרואיד, iPhone ואינטרנט. הירשמו לסנכרון מנויים במכשירים שונים.