Artwork

תוכן מסופק על ידי Machine Learning Street Talk (MLST). כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Machine Learning Street Talk (MLST) או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.
Player FM - אפליקציית פודקאסט
התחל במצב לא מקוון עם האפליקציה Player FM !

Dr. Brandon Rohrer - Robotics, Creativity and Intelligence

1:31:42
 
שתפו
 

Manage episode 400806320 series 2803422
תוכן מסופק על ידי Machine Learning Street Talk (MLST). כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Machine Learning Street Talk (MLST) או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.

Brandon Rohrer who obtained his Ph.D from MIT is driven by understanding algorithms ALL the way down to their nuts and bolts, so he can make them accessible to everyone by first explaining them in the way HE himself would have wanted to learn!

Please support us on Patreon for loads of exclusive content and private Discord:

https://patreon.com/mlst (public discord)

https://discord.gg/aNPkGUQtc5

https://twitter.com/MLStreetTalk

Brandon Rohrer is a seasoned data science leader and educator with a rich background in creating robust, efficient machine learning algorithms and tools. With a Ph.D. in Mechanical Engineering from MIT, his expertise encompasses a broad spectrum of AI applications — from computer vision and natural language processing to reinforcement learning and robotics. Brandon's career has seen him in Principle-level roles at Microsoft and Facebook. An educator at heart, he also shares his knowledge through detailed tutorials, courses, and his forthcoming book, "How to Train Your Robot."

YT version: https://www.youtube.com/watch?v=4Ps7ahonRCY

Brandon's links:

https://github.com/brohrer

https://www.youtube.com/channel/UCsBKTrp45lTfHa_p49I2AEQ

https://www.linkedin.com/in/brohrer/

How transformers work:

https://e2eml.school/transformers

Brandon's End-to-End Machine Learning school courses, posts, and tutorials

https://e2eml.school

Free course:

https://end-to-end-machine-learning.teachable.com/p/complete-course-library-full-end-to-end-machine-learning-catalog

Blog: https://e2eml.school/blog.html

Ziptie: Learning Useful Features [Brandon Rohrer]

https://www.brandonrohrer.com/ziptie

TOC should be baked into the MP3 file now

00:00:00 - Intro to Brandon

00:00:36 - RLHF

00:01:09 - Limitations of transformers

00:07:23 - Agency - we are all GPTs

00:09:07 - BPE / representation bias

00:12:00 - LLM true believers

00:16:42 - Brandon's style of teaching

00:19:50 - ML vs real world = Robotics

00:29:59 - Reward shaping

00:37:08 - No true Scotsman - when do we accept capabilities as real

00:38:50 - Externalism

00:43:03 - Building flexible robots

00:45:37 - Is reward enough

00:54:30 - Optimization curse

00:58:15 - Collective intelligence

01:01:51 - Intelligence + creativity

01:13:35 - ChatGPT + Creativity

01:25:19 - Transformers Tutorial

  continue reading

191 פרקים

Artwork
iconשתפו
 
Manage episode 400806320 series 2803422
תוכן מסופק על ידי Machine Learning Street Talk (MLST). כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Machine Learning Street Talk (MLST) או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.

Brandon Rohrer who obtained his Ph.D from MIT is driven by understanding algorithms ALL the way down to their nuts and bolts, so he can make them accessible to everyone by first explaining them in the way HE himself would have wanted to learn!

Please support us on Patreon for loads of exclusive content and private Discord:

https://patreon.com/mlst (public discord)

https://discord.gg/aNPkGUQtc5

https://twitter.com/MLStreetTalk

Brandon Rohrer is a seasoned data science leader and educator with a rich background in creating robust, efficient machine learning algorithms and tools. With a Ph.D. in Mechanical Engineering from MIT, his expertise encompasses a broad spectrum of AI applications — from computer vision and natural language processing to reinforcement learning and robotics. Brandon's career has seen him in Principle-level roles at Microsoft and Facebook. An educator at heart, he also shares his knowledge through detailed tutorials, courses, and his forthcoming book, "How to Train Your Robot."

YT version: https://www.youtube.com/watch?v=4Ps7ahonRCY

Brandon's links:

https://github.com/brohrer

https://www.youtube.com/channel/UCsBKTrp45lTfHa_p49I2AEQ

https://www.linkedin.com/in/brohrer/

How transformers work:

https://e2eml.school/transformers

Brandon's End-to-End Machine Learning school courses, posts, and tutorials

https://e2eml.school

Free course:

https://end-to-end-machine-learning.teachable.com/p/complete-course-library-full-end-to-end-machine-learning-catalog

Blog: https://e2eml.school/blog.html

Ziptie: Learning Useful Features [Brandon Rohrer]

https://www.brandonrohrer.com/ziptie

TOC should be baked into the MP3 file now

00:00:00 - Intro to Brandon

00:00:36 - RLHF

00:01:09 - Limitations of transformers

00:07:23 - Agency - we are all GPTs

00:09:07 - BPE / representation bias

00:12:00 - LLM true believers

00:16:42 - Brandon's style of teaching

00:19:50 - ML vs real world = Robotics

00:29:59 - Reward shaping

00:37:08 - No true Scotsman - when do we accept capabilities as real

00:38:50 - Externalism

00:43:03 - Building flexible robots

00:45:37 - Is reward enough

00:54:30 - Optimization curse

00:58:15 - Collective intelligence

01:01:51 - Intelligence + creativity

01:13:35 - ChatGPT + Creativity

01:25:19 - Transformers Tutorial

  continue reading

191 פרקים

كل الحلقات

×
 
Loading …

ברוכים הבאים אל Player FM!

Player FM סורק את האינטרנט עבור פודקאסטים באיכות גבוהה בשבילכם כדי שתהנו מהם כרגע. זה יישום הפודקאסט הטוב ביותר והוא עובד על אנדרואיד, iPhone ואינטרנט. הירשמו לסנכרון מנויים במכשירים שונים.

 

מדריך עזר מהיר