Artwork

תוכן מסופק על ידי Machine Learning Street Talk (MLST). כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Machine Learning Street Talk (MLST) או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.
Player FM - אפליקציית פודקאסט
התחל במצב לא מקוון עם האפליקציה Player FM !

Pedro Domingos: Tensor Logic Unifies AI Paradigms

1:27:48
 
שתפו
 

Manage episode 523192437 series 2803422
תוכן מסופק על ידי Machine Learning Street Talk (MLST). כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Machine Learning Street Talk (MLST) או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.

Pedro Domingos, author of the bestselling book "The Master Algorithm," introduces his latest work: Tensor Logic - a new programming language he believes could become the fundamental language for artificial intelligence.

Think of it like this: Physics found its language in calculus. Circuit design found its language in Boolean logic. Pedro argues that AI has been missing its language - until now.

**SPONSOR MESSAGES START**

Build your ideas with AI Studio from Google - http://ai.studio/build

Prolific - Quality data. From real people. For faster breakthroughs.

https://www.prolific.com/?utm_source=mlst

cyber•Fund https://cyber.fund/?utm_source=mlst is a founder-led investment firm accelerating the cybernetic economy

Hiring a SF VC Principal: https://talent.cyber.fund/companies/cyber-fund-2/jobs/57674170-ai-investment-principal#content?utm_source=mlst

Submit investment deck: https://cyber.fund/contact?utm_source=mlst

**END**

Current AI is split between two worlds that don't play well together:

Deep Learning (neural networks, transformers, ChatGPT) - great at learning from data, terrible at logical reasoning

Symbolic AI (logic programming, expert systems) - great at logical reasoning, terrible at learning from messy real-world data

Tensor Logic unifies both. It's a single language where you can:

Write logical rules that the system can actually learn and modify

Do transparent, verifiable reasoning (no hallucinations)

Mix "fuzzy" analogical thinking with rock-solid deduction

INTERACTIVE TRANSCRIPT:

https://app.rescript.info/public/share/NP4vZQ-GTETeN_roB2vg64vbEcN7isjJtz4C86WSOhw

TOC:

00:00:00 - Introduction

00:04:41 - What is Tensor Logic?

00:09:59 - Tensor Logic vs PyTorch & Einsum

00:17:50 - The Master Algorithm Connection

00:20:41 - Predicate Invention & Learning New Concepts

00:31:22 - Symmetries in AI & Physics

00:35:30 - Computational Reducibility & The Universe

00:43:34 - Technical Details: RNN Implementation

00:45:35 - Turing Completeness Debate

00:56:45 - Transformers vs Turing Machines

01:02:32 - Reasoning in Embedding Space

01:11:46 - Solving Hallucination with Deductive Modes

01:16:17 - Adoption Strategy & Migration Path

01:21:50 - AI Education & Abstraction

01:24:50 - The Trillion-Dollar Waste

REFS

Tensor Logic: The Language of AI [Pedro Domingos]

https://arxiv.org/abs/2510.12269

The Master Algorithm [Pedro Domingos]

https://www.amazon.co.uk/Master-Algorithm-Ultimate-Learning-Machine/dp/0241004543

Einsum is All you Need (TIM ROCKTÄSCHEL)

https://rockt.ai/2018/04/30/einsum

https://www.youtube.com/watch?v=6DrCq8Ry2cw

Autoregressive Large Language Models are Computationally Universal (Dale Schuurmans et al - GDM)

https://arxiv.org/abs/2410.03170

Memory Augmented Large Language Models are Computationally Universal [Dale Schuurmans]

https://arxiv.org/pdf/2301.04589

On the computational power of NNs [95/Siegelmann]

https://binds.cs.umass.edu/papers/1995_Siegelmann_JComSysSci.pdf

Sebastian Bubeck

https://www.reddit.com/r/OpenAI/comments/1oacp38/openai_researcher_sebastian_bubeck_falsely_claims/

I am a strange loop - Hofstadter

https://www.amazon.co.uk/Am-Strange-Loop-Douglas-Hofstadter/dp/0465030793

Stephen Wolfram

https://www.youtube.com/watch?v=dkpDjd2nHgo

The Complex World: An Introduction to the Foundations of Complexity Science [David C. Krakauer]

https://www.amazon.co.uk/Complex-World-Introduction-Foundations-Complexity/dp/1947864629

Geometric Deep Learning

https://www.youtube.com/watch?v=bIZB1hIJ4u8

Andrew Wilson (NYU)

https://www.youtube.com/watch?v=M-jTeBCEGHc

Yi Ma

https://www.patreon.com/posts/yi-ma-scientific-141953348

Roger Penrose - road to reality

https://www.amazon.co.uk/Road-Reality-Complete-Guide-Universe/dp/0099440687

Artificial Intelligence: A Modern Approach [Russel and Norvig]

https://www.amazon.co.uk/Artificial-Intelligence-Modern-Approach-Global/dp/1292153962

  continue reading

239 פרקים

Artwork
iconשתפו
 
Manage episode 523192437 series 2803422
תוכן מסופק על ידי Machine Learning Street Talk (MLST). כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Machine Learning Street Talk (MLST) או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.

Pedro Domingos, author of the bestselling book "The Master Algorithm," introduces his latest work: Tensor Logic - a new programming language he believes could become the fundamental language for artificial intelligence.

Think of it like this: Physics found its language in calculus. Circuit design found its language in Boolean logic. Pedro argues that AI has been missing its language - until now.

**SPONSOR MESSAGES START**

Build your ideas with AI Studio from Google - http://ai.studio/build

Prolific - Quality data. From real people. For faster breakthroughs.

https://www.prolific.com/?utm_source=mlst

cyber•Fund https://cyber.fund/?utm_source=mlst is a founder-led investment firm accelerating the cybernetic economy

Hiring a SF VC Principal: https://talent.cyber.fund/companies/cyber-fund-2/jobs/57674170-ai-investment-principal#content?utm_source=mlst

Submit investment deck: https://cyber.fund/contact?utm_source=mlst

**END**

Current AI is split between two worlds that don't play well together:

Deep Learning (neural networks, transformers, ChatGPT) - great at learning from data, terrible at logical reasoning

Symbolic AI (logic programming, expert systems) - great at logical reasoning, terrible at learning from messy real-world data

Tensor Logic unifies both. It's a single language where you can:

Write logical rules that the system can actually learn and modify

Do transparent, verifiable reasoning (no hallucinations)

Mix "fuzzy" analogical thinking with rock-solid deduction

INTERACTIVE TRANSCRIPT:

https://app.rescript.info/public/share/NP4vZQ-GTETeN_roB2vg64vbEcN7isjJtz4C86WSOhw

TOC:

00:00:00 - Introduction

00:04:41 - What is Tensor Logic?

00:09:59 - Tensor Logic vs PyTorch & Einsum

00:17:50 - The Master Algorithm Connection

00:20:41 - Predicate Invention & Learning New Concepts

00:31:22 - Symmetries in AI & Physics

00:35:30 - Computational Reducibility & The Universe

00:43:34 - Technical Details: RNN Implementation

00:45:35 - Turing Completeness Debate

00:56:45 - Transformers vs Turing Machines

01:02:32 - Reasoning in Embedding Space

01:11:46 - Solving Hallucination with Deductive Modes

01:16:17 - Adoption Strategy & Migration Path

01:21:50 - AI Education & Abstraction

01:24:50 - The Trillion-Dollar Waste

REFS

Tensor Logic: The Language of AI [Pedro Domingos]

https://arxiv.org/abs/2510.12269

The Master Algorithm [Pedro Domingos]

https://www.amazon.co.uk/Master-Algorithm-Ultimate-Learning-Machine/dp/0241004543

Einsum is All you Need (TIM ROCKTÄSCHEL)

https://rockt.ai/2018/04/30/einsum

https://www.youtube.com/watch?v=6DrCq8Ry2cw

Autoregressive Large Language Models are Computationally Universal (Dale Schuurmans et al - GDM)

https://arxiv.org/abs/2410.03170

Memory Augmented Large Language Models are Computationally Universal [Dale Schuurmans]

https://arxiv.org/pdf/2301.04589

On the computational power of NNs [95/Siegelmann]

https://binds.cs.umass.edu/papers/1995_Siegelmann_JComSysSci.pdf

Sebastian Bubeck

https://www.reddit.com/r/OpenAI/comments/1oacp38/openai_researcher_sebastian_bubeck_falsely_claims/

I am a strange loop - Hofstadter

https://www.amazon.co.uk/Am-Strange-Loop-Douglas-Hofstadter/dp/0465030793

Stephen Wolfram

https://www.youtube.com/watch?v=dkpDjd2nHgo

The Complex World: An Introduction to the Foundations of Complexity Science [David C. Krakauer]

https://www.amazon.co.uk/Complex-World-Introduction-Foundations-Complexity/dp/1947864629

Geometric Deep Learning

https://www.youtube.com/watch?v=bIZB1hIJ4u8

Andrew Wilson (NYU)

https://www.youtube.com/watch?v=M-jTeBCEGHc

Yi Ma

https://www.patreon.com/posts/yi-ma-scientific-141953348

Roger Penrose - road to reality

https://www.amazon.co.uk/Road-Reality-Complete-Guide-Universe/dp/0099440687

Artificial Intelligence: A Modern Approach [Russel and Norvig]

https://www.amazon.co.uk/Artificial-Intelligence-Modern-Approach-Global/dp/1292153962

  continue reading

239 פרקים

כל הפרקים

×
 
Loading …

ברוכים הבאים אל Player FM!

Player FM סורק את האינטרנט עבור פודקאסטים באיכות גבוהה בשבילכם כדי שתהנו מהם כרגע. זה יישום הפודקאסט הטוב ביותר והוא עובד על אנדרואיד, iPhone ואינטרנט. הירשמו לסנכרון מנויים במכשירים שונים.

 

מדריך עזר מהיר

האזן לתוכנית הזו בזמן שאתה חוקר
הפעלה