Artwork

תוכן מסופק על ידי HackerNoon. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי HackerNoon או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.
Player FM - אפליקציית פודקאסט
התחל במצב לא מקוון עם האפליקציה Player FM !

Analyzing the Performance of Deep Encoder-Decoder Networks as Surrogates for a Diffusion Equation

11:16
 
שתפו
 

Manage episode 424956096 series 3474148
תוכן מסופק על ידי HackerNoon. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי HackerNoon או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.

This story was originally published on HackerNoon at: https://hackernoon.com/analyzing-the-performance-of-deep-encoder-decoder-networks-as-surrogates-for-a-diffusion-equation.
Discover how encoder-decoder CNNs serve as efficient surrogates for diffusion solvers, improving computational speed and model performance.
Check more stories related to machine-learning at: https://hackernoon.com/c/machine-learning. You can also check exclusive content about #deep-learning, #diffusion-surrogate, #encoder-decoder, #neural-networks, #training-algorithms, #neural-network-architecture, #multiscale-modeling, #deep-learning-benchmarks, and more.
This story was written by: @reinforcement. Learn more about this writer by checking @reinforcement's about page, and for more stories, please visit hackernoon.com.
The abstract discusses the utilization of encoder-decoder CNN architectures as surrogates for steady-state diffusion solvers. It explores the impact of factors like training set size, loss functions, and hyperparameters on model performance, highlighting the challenges and opportunities in developing deep learning surrogates for diffusion problems.

  continue reading

353 פרקים

Artwork
iconשתפו
 
Manage episode 424956096 series 3474148
תוכן מסופק על ידי HackerNoon. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי HackerNoon או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.

This story was originally published on HackerNoon at: https://hackernoon.com/analyzing-the-performance-of-deep-encoder-decoder-networks-as-surrogates-for-a-diffusion-equation.
Discover how encoder-decoder CNNs serve as efficient surrogates for diffusion solvers, improving computational speed and model performance.
Check more stories related to machine-learning at: https://hackernoon.com/c/machine-learning. You can also check exclusive content about #deep-learning, #diffusion-surrogate, #encoder-decoder, #neural-networks, #training-algorithms, #neural-network-architecture, #multiscale-modeling, #deep-learning-benchmarks, and more.
This story was written by: @reinforcement. Learn more about this writer by checking @reinforcement's about page, and for more stories, please visit hackernoon.com.
The abstract discusses the utilization of encoder-decoder CNN architectures as surrogates for steady-state diffusion solvers. It explores the impact of factors like training set size, loss functions, and hyperparameters on model performance, highlighting the challenges and opportunities in developing deep learning surrogates for diffusion problems.

  continue reading

353 פרקים

All episodes

×
 
Loading …

ברוכים הבאים אל Player FM!

Player FM סורק את האינטרנט עבור פודקאסטים באיכות גבוהה בשבילכם כדי שתהנו מהם כרגע. זה יישום הפודקאסט הטוב ביותר והוא עובד על אנדרואיד, iPhone ואינטרנט. הירשמו לסנכרון מנויים במכשירים שונים.

 

מדריך עזר מהיר

האזן לתוכנית הזו בזמן שאתה חוקר
הפעלה