Artwork

תוכן מסופק על ידי HackerNoon. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי HackerNoon או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.
Player FM - אפליקציית פודקאסט
התחל במצב לא מקוון עם האפליקציה Player FM !

How To Use Target Encoding in Machine Learning Credit Risk Models – Part 1

6:53
 
שתפו
 

Manage episode 422105042 series 3474148
תוכן מסופק על ידי HackerNoon. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי HackerNoon או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.

This story was originally published on HackerNoon at: https://hackernoon.com/how-to-use-target-encoding-in-machine-learning-credit-risk-models-part-1.
Discover how to use target encoding and weight of evidence for transforming categorical variables in supervised learning, enhancing model performance.
Check more stories related to machine-learning at: https://hackernoon.com/c/machine-learning. You can also check exclusive content about #ml-credit-risk-models, #target-encoding, #ml-models, #output-encoding, #logistic-regression, #piecewise-constant-model, #predictive-ml-modelling, #ml-model-optimization, and more.
This story was written by: @varunnakra1. Learn more about this writer by checking @varunnakra1's about page, and for more stories, please visit hackernoon.com.
Target encoding transforms categorical variables into numerical values based on the target variable, while Weight of Evidence (WoE) applies this concept to continuous variables for binary classification. WoE calculates log-odds differences between specific regions and overall averages, offering a powerful tool for credit risk modeling and other applications.

  continue reading

316 פרקים

Artwork
iconשתפו
 
Manage episode 422105042 series 3474148
תוכן מסופק על ידי HackerNoon. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי HackerNoon או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.

This story was originally published on HackerNoon at: https://hackernoon.com/how-to-use-target-encoding-in-machine-learning-credit-risk-models-part-1.
Discover how to use target encoding and weight of evidence for transforming categorical variables in supervised learning, enhancing model performance.
Check more stories related to machine-learning at: https://hackernoon.com/c/machine-learning. You can also check exclusive content about #ml-credit-risk-models, #target-encoding, #ml-models, #output-encoding, #logistic-regression, #piecewise-constant-model, #predictive-ml-modelling, #ml-model-optimization, and more.
This story was written by: @varunnakra1. Learn more about this writer by checking @varunnakra1's about page, and for more stories, please visit hackernoon.com.
Target encoding transforms categorical variables into numerical values based on the target variable, while Weight of Evidence (WoE) applies this concept to continuous variables for binary classification. WoE calculates log-odds differences between specific regions and overall averages, offering a powerful tool for credit risk modeling and other applications.

  continue reading

316 פרקים

כל הפרקים

×
 
Loading …

ברוכים הבאים אל Player FM!

Player FM סורק את האינטרנט עבור פודקאסטים באיכות גבוהה בשבילכם כדי שתהנו מהם כרגע. זה יישום הפודקאסט הטוב ביותר והוא עובד על אנדרואיד, iPhone ואינטרנט. הירשמו לסנכרון מנויים במכשירים שונים.

 

מדריך עזר מהיר

האזן לתוכנית הזו בזמן שאתה חוקר
הפעלה