Artwork

Player FM - Internet Radio Done Right

51 subscribers

Checked 1d ago
เพิ่มแล้วเมื่อ threeปีที่ผ่านมา
תוכן מסופק על ידי Demetrios. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Demetrios או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.
Player FM - אפליקציית פודקאסט
התחל במצב לא מקוון עם האפליקציה Player FM !
icon Daily Deals

Real-Time Exactly-Once Event Processing with Apache Flink, Kafka, and Pinot //Jacob Tsafatinos // MLOps Coffee Sessions #97

54:12
 
שתפו
 

Manage episode 327596697 series 3241972
תוכן מסופק על ידי Demetrios. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Demetrios או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.

MLOps Coffee Sessions #97 with Jacob Tsafatinos, Real-Time Exactly-Once Event Processing with Apache Flink, Kafka, and Pinot co-hosted by Mihail Eric.
// Abstract
A few years ago Uber set out to create an ads platform for the Uber Eats app that relied heavily on three pillars; Speed, Reliability, and Accuracy. Some of the technical challenges they were faced with included exactly-once semantics in real-time. To accomplish this goal, they created the architecture diagram above with lots of love from Flink, Kafka, Hive, and Pinot. You can dig into the whole paper (https://go.mlops.community/k8gzZd) to see all the reasoning for their design decisions.
// Bio
Jacob Tsafatinos is a Staff Software Engineer at Elemy. He led the efforts of the Ad Events Processing system at Uber and has previously worked on a range of problems including data ingestion for search and machine learning recommendation pipelines. In his spare time, he can be found playing lead guitar in his band Good Kid.

// MLOps Jobs board
https://mlops.pallet.xyz/jobs
// Related Links
Uber blog
https://eng.uber.com/author/jacob-tsafatinos/
https://eng.uber.com/real-time-exactly-once-ad-event-processing/
--------------- ✌️Connect With Us ✌️ -------------
Join our slack community: https://go.mlops.community/slack
Follow us on Twitter: @mlopscommunity
Sign up for the next meetup: https://go.mlops.community/register
Catch all episodes, blogs, newsletters, and more: https://mlops.community/

Connect with Demetrios on LinkedIn: https://www.linkedin.com/in/dpbrinkm/
Connect with Mihail on LinkedIn: https://www.linkedin.com/in/mihaileric/
Connect with Jacob on LinkedIn: https://www.linkedin.com/in/jacobtsaf/
Timestamps:
[00:00] Introduction to Jacob Tsafatinos
[00:40] Takeaways
[04:25] Jacob's band
[05:29] Lyrics about software engineers or artistic stuff
[06:20] Connection of hobby and real-time system
[08:43] How to game Spotify Algorithm?
[10:00] Data stack for analytics
[13:28] Uber blog
[16:28] Video mess up
[17:04] Considerations and importance of the Uber System
[21:22] Challenges encountered through the Uber System journey
[26:06] Crucial to building the system
[28:13] Not exactly real-time
[30:22] Design decisions main questions
[34:23] Testament to OSS
[36:58] Real-time processing systems for analytical use cases vs Real-time processing systems for predictive use cases
[38:46] Real-time systems necessity
[41:04] Potential that opens up new doors
[41:40] Runaway or learn it?
[46:09] Real-time use case target
[49:31] Resource constrained
[50:48] ML Oops stories
[52:45] Wrap up

  continue reading

430 פרקים

Artwork
iconשתפו
 
Manage episode 327596697 series 3241972
תוכן מסופק על ידי Demetrios. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Demetrios או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.

MLOps Coffee Sessions #97 with Jacob Tsafatinos, Real-Time Exactly-Once Event Processing with Apache Flink, Kafka, and Pinot co-hosted by Mihail Eric.
// Abstract
A few years ago Uber set out to create an ads platform for the Uber Eats app that relied heavily on three pillars; Speed, Reliability, and Accuracy. Some of the technical challenges they were faced with included exactly-once semantics in real-time. To accomplish this goal, they created the architecture diagram above with lots of love from Flink, Kafka, Hive, and Pinot. You can dig into the whole paper (https://go.mlops.community/k8gzZd) to see all the reasoning for their design decisions.
// Bio
Jacob Tsafatinos is a Staff Software Engineer at Elemy. He led the efforts of the Ad Events Processing system at Uber and has previously worked on a range of problems including data ingestion for search and machine learning recommendation pipelines. In his spare time, he can be found playing lead guitar in his band Good Kid.

// MLOps Jobs board
https://mlops.pallet.xyz/jobs
// Related Links
Uber blog
https://eng.uber.com/author/jacob-tsafatinos/
https://eng.uber.com/real-time-exactly-once-ad-event-processing/
--------------- ✌️Connect With Us ✌️ -------------
Join our slack community: https://go.mlops.community/slack
Follow us on Twitter: @mlopscommunity
Sign up for the next meetup: https://go.mlops.community/register
Catch all episodes, blogs, newsletters, and more: https://mlops.community/

Connect with Demetrios on LinkedIn: https://www.linkedin.com/in/dpbrinkm/
Connect with Mihail on LinkedIn: https://www.linkedin.com/in/mihaileric/
Connect with Jacob on LinkedIn: https://www.linkedin.com/in/jacobtsaf/
Timestamps:
[00:00] Introduction to Jacob Tsafatinos
[00:40] Takeaways
[04:25] Jacob's band
[05:29] Lyrics about software engineers or artistic stuff
[06:20] Connection of hobby and real-time system
[08:43] How to game Spotify Algorithm?
[10:00] Data stack for analytics
[13:28] Uber blog
[16:28] Video mess up
[17:04] Considerations and importance of the Uber System
[21:22] Challenges encountered through the Uber System journey
[26:06] Crucial to building the system
[28:13] Not exactly real-time
[30:22] Design decisions main questions
[34:23] Testament to OSS
[36:58] Real-time processing systems for analytical use cases vs Real-time processing systems for predictive use cases
[38:46] Real-time systems necessity
[41:04] Potential that opens up new doors
[41:40] Runaway or learn it?
[46:09] Real-time use case target
[49:31] Resource constrained
[50:48] ML Oops stories
[52:45] Wrap up

  continue reading

430 פרקים

כל הפרקים

×
 
Behavior Modeling, Secondary AI Effects, Bias Reduction & Synthetic Data // MLOps Podcast #311 with Devansh Devansh, Head of AI at Stealth AI Startup. Join the Community: https://go.mlops.community/YTJoinIn Get the newsletter: https://go.mlops.community/YTNewsletter // AbstractOpen-source AI researcher Devansh Devansh joins Demetrios to discuss grounded AI research, jailbreaking risks, Nvidia’s Gretel AI acquisition, and the role of synthetic data in reducing bias. They explore why deterministic systems may outperform autonomous agents and urge listeners to challenge power structures and rethink how intelligence is built into data infrastructure. // BioThe best meme-maker in Tech. Writer on AI, Software, and the Tech Industry. // Related Links Subscribe to Artificial Intelligence Made Simple: https://artificialintelligencemadesimple.substack.com/https://www.linkedin.com/pulse/alternative-ways-build-ai-models-taoist-devansh-devansh-z9iff/?trackingId=TKvUBldml6rOQUjqam%2B7lA%3D%3D ~~~~~~~~ ✌️Connect With Us ✌️ ~~~~~~~Catch all episodes, blogs, newsletters, and more: https://go.mlops.community/TYExploreJoin our slack community [https://go.mlops.community/slack]Follow us on X/Twitter [@mlopscommunity](https://x.com/mlopscommunity) or [LinkedIn](https://go.mlops.community/linkedin)] Sign up for the next meetup: [https://go.mlops.community/register]MLOps Swag/Merch: [https://shop.mlops.community/]Connect with Demetrios on LinkedIn: /dpbrinkmConnect with Devansh on LinkedIn: /devansh-devansh-516004168 Timestamps:[00:00] Devansh's preferred coffee[01:23] Jailbreaking DeepSeek[02:24] AI Made Simple [07:16] Leveraging AI for Data Insights[10:42] Synthetic Data and LLMs[19:29] AI Experience Design[22:20] Synthetic Data Bias Reduction[26:33] Data Ecosystem Insights[29:50] Moving Intelligence to Data Layer[36:37] Minimizing Model Responsibility[40:04] Workflow vs Generalized Agents[49:24] AI Second-Order Effects[55:26] AI Experience vs Efficiency[1:01:10] Wrap up…
 
GraphBI: Expanding Analytics to All Data Through the Combination of GenAI, Graph, & Visual Analytics // MLOps Podcast #310 with Paco Nathan, Principal DevRel Engineer at Senzing & Weidong Yang, CEO of Kineviz. Join the Community: https://go.mlops.community/YTJoinIn Get the newsletter: https://go.mlops.community/YTNewsletter // AbstractExisting BI and big data solutions depend largely on structured data, which makes up only about 20% of all available information, leaving the vast majority untapped. In this talk, we introduce GraphBI, which aims to address this challenge by combining GenAI, graph technology, and visual analytics to unlock the full potential of enterprise data. Recent technologies like RAG (Retrieval-Augmented Generation) and GraphRAG leverage GenAI for tasks such as summarization and Q&A, but they often function as black boxes, making verification challenging. In contrast, GraphBI uses GenAI for data pre-processing—converting unstructured data into a graph-based format—enabling a transparent, step-by-step analytics process that ensures reliability. We will walk through the GraphBI workflow, exploring best practices and challenges in each step of the process: managing both structured and unstructured data, data pre-processing with GenAI, iterative analytics using a BI-focused graph grammar, and final insight presentation. This approach uniquely surfaces business insights by effectively incorporating all types of data. // BioPaco NathanPaco Nathan is a "player/coach" who excels in data science, machine learning, and natural language, with 40 years of industry experience. He leads DevRel for the Entity Resolved Knowledge Graph practice area at Senzing.com and advises Argilla.io, Kurve.ai, KungFu.ai, and DataSpartan.co.uk, and is lead committer for the pytextrank​ and kglab​ open source projects. Formerly: Director of Learning Group at O'Reilly Media; and Director of Community Evangelism at Databricks. Weidong YangWeidong Yang, Ph.D., is the founder and CEO of Kineviz, a San Francisco-based company that develops interactive visual analytics based solutions to address complex big data problems. His expertise spans Physics, Computer Science and Performing Art, with significant contributions to the semiconductor industry and quantum dot research at UC, Berkeley and Silicon Valley. Yang also leads Kinetech Arts, a 501(c) non-profit blending dance, science, and technology. An eloquent public speaker and performer, he holds 11 US patents, including the groundbreaking Diffraction-based Overlay technology, vital for sub-10-nm semiconductor production. // Related LinksWebsite: https://www.kineviz.com/Blog: https://medium.com/kinevizWebsite: https://derwen.ai/pacohttps://huggingface.co/pacoidhttps://github.com/ceterihttps://neo4j.com/developer-blog/entity-resolved-knowledge-graphs/ ~~~~~~~~ ✌️Connect With Us ✌️ ~~~~~~~Catch all episodes, blogs, newsletters, and more: https://go.mlops.community/TYExploreJoin our slack community [https://go.mlops.community/slack]Follow us on X/Twitter [@mlopscommunity](https://x.com/mlopscommunity) or [LinkedIn](https://go.mlops.community/linkedin)] Sign up for the next meetup: [https://go.mlops.community/register]MLOps Swag/Merch: [https://shop.mlops.community/]Connect with Demetrios on LinkedIn: /dpbrinkmConnect with Weidong on LinkedIn: /yangweidong/Connect with Paco on LinkedIn: /ceteri/…
 
AI Data Engineers - Data Engineering after AI // MLOps Podcast #309 with Vikram Chennai, Founder/CEO of Ardent AI. Join the Community: https://go.mlops.community/YTJoinIn Get the newsletter: https://go.mlops.community/YTNewsletter // AbstractA discussion of Agentic approaches to Data Engineering. Exploring the benefits and pitfalls of AI solutions and how to design product-grade AI agents, especially in data. // BioSecond Time Founder. 5 years building Deep learning models. Currently, AI Data Engineers // Related LinksWebsite: tryardent.com ~~~~~~~~ ✌️Connect With Us ✌️ ~~~~~~~Catch all episodes, blogs, newsletters, and more: https://go.mlops.community/TYExploreJoin our slack community [https://go.mlops.community/slack]Follow us on X/Twitter [@mlopscommunity](https://x.com/mlopscommunity) or [LinkedIn](https://go.mlops.community/linkedin)] Sign up for the next meetup: [https://go.mlops.community/register]MLOps Swag/Merch: [https://shop.mlops.community/]Connect with Demetrios on LinkedIn: /dpbrinkmConnect with Vikram on LinkedIn: /vikram-chennai/…
 
I am once again asking "What is MLOps?" // MLOps Podcast #308 with Oleksandr Stasyk, Engineering Manager, ML Platform of Synthesia. Join the Community: https://go.mlops.community/YTJoinIn Get the newsletter: https://go.mlops.community/YTNewsletter // AbstractWhat does it mean to MLOps now? Everyone is trying to make a killing from AI, everyone wants the freshest technology to show off as part of their product. But what impact does that have on the "journey of the model". Do we still think about how an idea makes it's way to production to make money? How can we get better at it, maybe the answer lies in the ancient "non-AI" past... // BioFor the majority of my career I have been a "full stack" developer with a leaning towards devops and platforms. In the last four years or so, I have worked on ML Platforms. I find that applying good software engineering practises is more important than ever in this AI fueled world. // Related LinksBlogs: https://medium.com/@sashman90/mlops-the-evolution-of-the-t-shaped-engineer-a4d8a24a4042 ~~~~~~~~ ✌️Connect With Us ✌️ ~~~~~~~Catch all episodes, blogs, newsletters, and more: https://go.mlops.community/TYExploreJoin our slack community [https://go.mlops.community/slack]Follow us on X/Twitter [@mlopscommunity](https://x.com/mlopscommunity) or [LinkedIn](https://go.mlops.community/linkedin)] Sign up for the next meetup: [https://go.mlops.community/register]MLOps Swag/Merch: [https://shop.mlops.community/]Connect with Demetrios on LinkedIn: /dpbrinkmConnect with Sash on LinkedIn: /oleksandr-stasyk-5751946b…
 
How Sama is Improving ML Models to Make AVs Safer // MLOps Podcast #307 with Duncan Curtis, SVP of Product and Technology at Sama. Join the Community: https://go.mlops.community/YTJoinIn Get the newsletter: https://go.mlops.community/YTNewsletter // Abstract Between Uber’s partnership with NVIDIA and speculation around the U.S.'s President Donald Trump enacting policies that allow fully autonomous vehicles, it’s more important than ever to ensure the accuracy of machine learning models. Yet, the public’s confidence in AVs is shaky due to scary accidents caused by gaps in the tech that Sama is looking to fill.As one of the industry’s top leaders, Duncan Curtis, SVP of Product and Technology at Sama, would be delighted to share how we can improve the accuracy, speed, and cost-efficiency of ML algorithms for ​A​Vs. Sama’s machine learning technologies minimize the risk of model failure and lower the total cost of ownership for car manufacturers including Ford, BMW, and GM, as well as four of the five top OEMs and their Tier 1 suppliers. This is especially timely as Tesla is under investigation for crashes due to its Smart Summon feature and Waymo recently had a passenger trapped in one of its driverless taxis. // Bio Duncan Curtis is the SVP of Product at Sama, a leader in de-risking ML models, delivering best-in-class data annotation solutions with our enterprise-strength, experience & expertise, and ethical AI approach. To this leadership role, he brings 4 years of Autonomous Vehicle experience as the Head of Product at Zoox (now part of Amazon) and VP of Product at Aptiv, and 4 years of AI experience as a product manager at Google where he delighted the +1B daily active users of the Play Store and Play Games. // Related Links Website: https://www.sama.com/Tesla is under investigation: https://www.cnn.com/2025/01/07/business/nhtsa-tesla-smart-summon-probe/index.htmlWaymo recently had a passenger trapped: https://www.cbsnews.com/losangeles/news/la-man-nearly-misses-flight-as-self-driving-waymo-taxi-drives-around-parking-lot-in-circles/https://coruzant.com/profiles/duncan-curtis/https://builtin.com/articles/remove-bias-from-machine-learning-algorithmsLook At Your ****ing Data :eyes: // Kenny Daniel // MLOps Podcast #292: https://youtu.be/6EMnkAHmoag ~~~~~~~~ ✌️Connect With Us ✌️ ~~~~~~~Catch all episodes, blogs, newsletters, and more: https://go.mlops.community/TYExploreJoin our slack community [https://go.mlops.community/slack]Follow us on X/Twitter [@mlopscommunity](https://x.com/mlopscommunity) or [LinkedIn](https://go.mlops.community/linkedin)] Sign up for the next meetup: [https://go.mlops.community/register]MLOps Swag/Merch: [https://shop.mlops.community/]Connect with Demetrios on LinkedIn: /dpbrinkmConnect with Luca on LinkedIn: /duncan-curtis Timestamps:[00:00] Duncan's preferred coffee[00:08] Takeaways[01:00] AI Enterprise Focus[04:18] Human-in-the-loop Efficiency[08:42] Edge Cases in AI[14:14] Forward Combat Compatibility Failures[17:30] Specialized Data Annotation Challenges[24:44] SAM for Ring Integration[28:50] Data Bottleneck in AI[31:29] Data Connector Horror Story[33:17] Sama AI Data Annotation[37:20] Cool Business Problems Solved[40:50] AI ROI Framework[45:11] Wrap up…
 
Agents of Innovation: AI-Powered Product Ideation with Synthetic Consumer Testing // MLOps Podcast #306 with Luca Fiaschi, Partner of PyMC Labs. Join the Community: https://go.mlops.community/YTJoinIn Get the newsletter: https://go.mlops.community/YTNewsletter // Abstract Traditional product development cycles require extensive consumer research and market testing, resulting in lengthy development timelines and significant resource investment. We've transformed this process by building a distributed multi-agent system that enables parallel quantitative evaluation of hundreds of product concepts. Our system combines three key components: an Agentic innovation lab generating high-quality product concepts, synthetic consumer panels using fine-tuned foundational models validated against historical data, and an evaluation framework that correlates with real-world testing outcomes. We can talk about how this architecture enables rapid concept discovery and digital experimentation, delivering insights into product success probability before development begins. Through case studies and technical deep-dives, you'll learn how we built an AI powered innovation lab that compresses months of product development and testing into minutes - without sacrificing the accuracy of insights. // Bio With over 15 years of leadership experience in AI, data science, and analytics, Luca has driven transformative growth in technology-first businesses. As Chief Data & AI Officer at Mistplay, he led the company’s revenue growth through AI-powered personalization and data-driven pricing. Prior to that, he held executive roles at global industry leaders such as HelloFresh ($8B), Stitch Fix ($1.2B) and Rocket Internet ($1B). Luca's core competencies include machine learning, artificial intelligence, data mining, data engineering, and computer vision, which he has applied to various domains such as marketing, logistics, personalization, product, experimentation and pricing.He is currently a partner at PyMC Labs, a leading data science consultancy, providing insights and guidance on applications of Bayesian and Causal Inference techniques and Generative AI to fortune 500 companies. Luca holds a PhD in AI and Computer Vision from Heidelberg University and has more than 450 citations on his research work. // Related Links Website: https://www.pymc-labs.com/ ~~~~~~~~ ✌️Connect With Us ✌️ ~~~~~~~Catch all episodes, blogs, newsletters, and more: https://go.mlops.community/TYExploreJoin our slack community [https://go.mlops.community/slack]Follow us on X/Twitter [@mlopscommunity](https://x.com/mlopscommunity) or [LinkedIn](https://go.mlops.community/linkedin)] Sign up for the next meetup: [https://go.mlops.community/register]MLOps Swag/Merch: [https://shop.mlops.community/]Connect with Demetrios on LinkedIn: /dpbrinkmConnect with Luca on LinkedIn: /lfiaschi…
 
Real-Time Forecasting Faceoff: Time Series vs. DNNs // MLOps Podcast #305 with Josh Xi, Data Scientist at Lyft. Join the Community: https://go.mlops.community/YTJoinIn Get the newsletter: https://go.mlops.community/YTNewsletter // AbstractIn real-time forecasting (e.g. geohash level demand and supply forecast for an entire region), time series-based forecasting methods are widely adopted due to their simplicity and ease of training. This discussion explores how Lyft uses time series forecasting to respond to real-time market dynamics, covering practical tips and tricks for implementing these methods, an in-depth look at their adaptability for online re-training, and discussions on their interpretability and user intervention capabilities. By examining these topics, listeners will understand how time series forecasting can outperform DNNs, and how to effectively use time series forecasting for dynamic market conditions and decision-making applications. // BioJosh is a data scientist from the Marketplace team at Lyft, working on forecasting and modeling of marketplace signals that power products like pricing and driver incentives. Josh got his PHD in Operations Research in 2013, with minors in Statistics and Economics. Prior to joining Lyft, he worked as a research scientist in the Operations Research Lab at General Motors, focusing on optimization, simulation and forecasting modeling related to vehicle manufacturing, supply chain and car sharing systems. // Related LinksWebsite: https://www.lyft.com/ ~~~~~~~~ ✌️Connect With Us ✌️ ~~~~~~~Catch all episodes, blogs, newsletters, and more: https://go.mlops.community/TYExploreJoin our slack community [https://go.mlops.community/slack]Follow us on X/Twitter [@mlopscommunity](https://x.com/mlopscommunity) or [LinkedIn](https://go.mlops.community/linkedin)] Sign up for the next meetup: [https://go.mlops.community/register]MLOps Swag/Merch: [https://shop.mlops.community/]Connect with Demetrios on LinkedIn: /dpbrinkmConnect with Josh on LinkedIn: /joshxiaominxi…
 
We're All Finetuning Incorrectly // MLOps Podcast #304 with Tanmay Chopra, Founder & CEO of Emissary. Join the Community: https://go.mlops.community/YTJoinIn Get the newsletter: https://go.mlops.community/YTNewsletter // Abstract Finetuning is dead. Finetuning is only for style. We've all heard these claims. But the truth is we feel this way because all we've been doing is extended pretraining. I'm excited to chat about what real finetuning looks like - modifying output heads, loss functions and model layers, and it's implications on quality and latency. Happy to dive deeper into how DeepSeek leveraged this real version of finetuning through GRPO and how this is nothing more than a rediscovery of our old finetuning ways. I'm sure we'll naturally also dive into when developing and deploying your specialized models makes sense and the challenges you face when doing so. // Bio Tanmay is a machine learning engineer at Neeva, where he's currently engaged in reimagining the search experience through AI - wrangling with LLMs and building cold-start recommendation systems. Previously, Tanmay worked on TikTok's Global Trust&Safety Algorithms team - spearheading the development of AI technologies to counter violent extremism and graphic violence on the platform across 160+ countries.Tanmay has a bachelor's and master's in Computer Science from Columbia University, with a specialization in machine learning. Tanmay is deeply passionate about communicating science and technology to those outside its realm. He's previously written about LLMs for TechCrunch, held workshops across India on the art of science communication for high school and college students, and is the author of Black Holes, Big Bang and a Load of Salt - a labor of love that elucidated the oft-overlooked contributions of Indian scientists to modern science and helped everyday people understand some of the most complex scientific developments of the past century without breaking into a sweat! // Related Links ~~~~~~~~ ✌️Connect With Us ✌️ ~~~~~~~Catch all episodes, blogs, newsletters, and more: https://go.mlops.community/TYExploreJoin our slack community [https://go.mlops.community/slack]Follow us on X/Twitter [@mlopscommunity](https://x.com/mlopscommunity) or [LinkedIn](https://go.mlops.community/linkedin)] Sign up for the next meetup: [https://go.mlops.community/register]MLOps Swag/Merch: [https://shop.mlops.community/]Connect with Demetrios on LinkedIn: /dpbrinkmConnect with Tanmay on LinkedIn: /tanmayc98…
 
From Shiny to Strategic: The Maturation of AI Across Industries // MLOps Podcast #303 with David Cox, VP of Data Science; Assistant Director of Research at RethinkFirst; Institute of Applied Behavioral Science. Join the Community: https://go.mlops.community/YTJoinIn Get the newsletter: https://go.mlops.community/YTNewsletter // Abstract Shiny new objects are made available to artificial intelligence(AI) practitioners daily. For many who are not AI practitioners, the release of ChatGPT in 2022 was their first contact with modern AI technology. This led to a flurry of funding and excitement around how AI might improve their bottom line. Two years on, the novelty of AI has worn off for many companies but remains a strategic initiative. This strategic nuance has led to two patterns that suggest a maturation of the AI conversation across industries. First, conversations seem to be pivoting from "Are we doing [the shiny new thing]" to serious analysis of the ROI from things built. This reframe places less emphasis on simply adopting new technologies for the sake of doing so and more emphasis on the optimal stack to maximize return relative to cost. Second, conversations are shifting to emphasize market differentiation. That is, anyone can build products that wrap around LLMs. In competitive markets, creating products and functionality that all your competitors can also build is a poor business strategy (unless having a particular thing is industry standard). Creating a competitive advantage requires companies to think strategically about their unique data assets and what they can build that their competitors cannot. // Bio Dr. David Cox can formally lay claim to being a bioethicist (master's degree), a board-certified behavior analyst at the doctoral level, a behavioral economist (post-doc training), and a full-stack data scientist (post-doc training). He has worked in behavioral health for nearly 20 years as a clinician, academic researcher, scholar, technologist, and all-around behavior science junky. He currently works as the Assistant Director of Research for the Institute of Applied Behavioral Science at Endicott College and the VP of Data Science at RethinkFirst. David also likes to write, having published 60+ peer-reviewed articles, book chapters, and a few books. When he's not doing research or building tools at the intersection of artificial intelligence and behavioral health, he enjoys spending time with his wife and two beagles in and around Jacksonville, FL. // Related Links ~~~~~~~~ ✌️Connect With Us ✌️ ~~~~~~~Catch all episodes, blogs, newsletters, and more: https://go.mlops.community/TYExploreJoin our slack community [https://go.mlops.community/slack]Follow us on X/Twitter [@mlopscommunity](https://x.com/mlopscommunity) or [LinkedIn](https://go.mlops.community/linkedin)] Sign up for the next meetup: [https://go.mlops.community/register]MLOps Swag/Merch: [https://shop.mlops.community/]Connect with Demetrios on LinkedIn: /dpbrinkmConnect with David on LinkedIn: /coxdavidj…
 
Streaming Ecosystem Complexities and Cost Management // MLOps Podcast #302 with Rohit Agrawal, Director of Engineering at Tecton. Join the Community: https://go.mlops.community/YTJoinIn Get the newsletter: https://go.mlops.community/YTNewsletter // Abstract Demetrios talks with Rohit Agrawal, Director of Engineering at Tecton, about the challenges and future of streaming data in ML. Rohit shares his path at Tecton and insights on managing real-time and batch systems. They cover tool fragmentation (Kafka, Flink, etc.), infrastructure costs, managed services, and trends like using S3 for storage and Iceberg as the GitHub for data. The episode wraps with thoughts on BYOC solutions and evolving data architectures. // Bio Rohit Agrawal is an Engineering Manager at Tecton, leading the Real-Time Execution team. Before Tecton, Rohit was the a Lead Software Engineer at Salesforce, where he focused on transaction processign and storage in OLTP relational databases. He holds a Master’s Degree in Computer Systems from Carnegie Mellon University and a Bachelor’s Degree in Electrical Engineering from the Biria Institute of Technology and Science in Pilani, India. // Related Links ~~~~~~~~ ✌️Connect With Us ✌️ ~~~~~~~Catch all episodes, blogs, newsletters, and more: https://go.mlops.community/TYExploreJoin our slack community [https://go.mlops.community/slack]Follow us on X/Twitter [@mlopscommunity](https://x.com/mlopscommunity) or [LinkedIn](https://go.mlops.community/linkedin)] Sign up for the next meetup: [https://go.mlops.community/register]MLOps Swag/Merch: [https://shop.mlops.community/]Connect with Demetrios on LinkedIn: /dpbrinkmConnect with Rohit on LinkedIn: /agrawalrohit10…
 
Building Trust Through Technology: Responsible AI in Practice // MLOps Podcast #301 with Rafael Sandroni, Founder and CEO of GardionAI. Join the Community: https://go.mlops.community/YTJoinIn Get the newsletter: https://go.mlops.community/YTNewsletter // AbstractRafael Sandroni shares key insights on securing AI systems, tackling fraud, and implementing robust guardrails. From prompt injection attacks to AI-driven fraud detection, we explore the challenges and best practices for building safer AI. // BioEntrepreneur and problem solver. // Related LinksGardionAI LinkedIn: https://www.linkedin.com/company/guardionai/ ~~~~~~~~ ✌️Connect With Us ✌️ ~~~~~~~Catch all episodes, blogs, newsletters, and more: https://go.mlops.community/TYExploreJoin our slack community [https://go.mlops.community/slack]Follow us on X/Twitter [@mlopscommunity](https://x.com/mlopscommunity) or [LinkedIn](https://go.mlops.community/linkedin)] Sign up for the next meetup: [https://go.mlops.community/register]MLOps Swag/Merch: [https://shop.mlops.community/]Connect with Demetrios on LinkedIn: /dpbrinkmConnect with Rafael on LinkedIn: /rafaelsandroni Timestamps:[00:00] Rafael's preferred coffee[00:16] Takeaways[01:03] AI Assistant Best Practices[03:48] Siri vs In-App AI[08:44] AI Security Exploration[11:55] Zero Trust for LLMS[18:02] Indirect Prompt Injection Risks[22:42] WhatsApp Banking Risks[26:27] Traditional vs New Age Fraud[29:12] AI Fraud Mitigation Patterns[32:50] Agent Access Control Risks[34:31] Red Teaming and Pentesting[39:40] Data Security Paradox[40:48] Wrap up…
 
Beyond the Matrix: AI and the Future of Human Creativity // MLOps Podcast #300 with Fausto Albers, AI Engineer & Community Lead at AI Builders Club. Join the Community: https://go.mlops.community/YTJoinIn Get the newsletter: https://go.mlops.community/YTNewsletter // Abstract Fausto Albers discusses the intersection of AI and human creativity. He explores AI’s role in job interviews, personalized AI assistants, and the evolving nature of human-computer interaction. Key topics include AI-driven self-analysis, context-aware AI systems, and the impact of AI on optimizing human decision-making. The conversation highlights how AI can enhance creativity, collaboration, and efficiency by reducing cognitive load and making intelligent suggestions in real time. // Bio Fausto Albers is a relentless explorer of the unconventional—a techno-optimist with a foundation in sociology and behavioral economics, always connecting seemingly absurd ideas that, upon closer inspection, turn out to be the missing pieces of a bigger puzzle. He thrives in paradox: he overcomplicates the simple, oversimplifies the complex, and yet somehow lands on solutions that feel inevitable in hindsight. He believes that true innovation exists in the tension between chaos and structure—too much of either, and you’re stuck.His career has been anything but linear. He’s owned and operated successful restaurants, served high-stakes cocktails while juggling bottles on London’s bar tops, and later traded spirits for code—designing digital waiters, recommender systems, and AI-driven accounting tools. Now, he leads the AI Builders Club Amsterdam, a fast-growing community where AI engineers, researchers, and founders push the boundaries of intelligent systems.Ask him about RAG, and he’ll insist on specificity—because, as he puts it, discussing retrieval-augmented generation without clear definitions is as useful as declaring that “AI will have an impact on the world.” An engaging communicator, a sharp systems thinker, and a builder of both technology and communities, Fausto is here to challenge perspectives, deconstruct assumptions, and remix the future of AI. // Related Links Website: aibuilders.club ~~~~~~~~ ✌️Connect With Us ✌️ ~~~~~~~ Catch all episodes, blogs, newsletters, and more: https://go.mlops.community/TYExploreJoin our slack community [https://go.mlops.community/slack]Follow us on X/Twitter [@mlopscommunity](https://x.com/mlopscommunity) or [LinkedIn](https://go.mlops.community/linkedin)] Sign up for the next meetup: [https://go.mlops.community/register]MLOps Swag/Merch: [https://shop.mlops.community/]Connect with Demetrios on LinkedIn: /dpbrinkmConnect with Fausto on LinkedIn: /stepintoliquid…
 
Building Trust Through Technology: Responsible AI in Practice // MLOps Podcast #299 with Animesh Singh, Executive Director, AI Platform and Infrastructure of LinkedIn. Join the Community: https://go.mlops.community/YTJoinIn Get the newsletter: https://go.mlops.community/YTNewsletter // AbstractAnimesh discusses LLMs at scale, GPU infrastructure, and optimization strategies. He highlights LinkedIn's use of LLMs for features like profile summarization and hiring assistants, the rising cost of GPUs, and the trade-offs in model deployment. Animesh also touches on real-time training, inference efficiency, and balancing infrastructure costs with AI advancements. The conversation explores the evolving AI landscape, compliance challenges, and simplifying architecture to enhance scalability and talent acquisition. // BioExecutive Director, AI and ML Platform at LinkedIn | Ex IBM Senior Director and Distinguished Engineer, Watson AI and Data | Founder at Kubeflow | Ex LFAI Trusted AI NA Chair Animesh is the Executive Director leading the next-generation AI and ML Platform at LinkedIn, enabling the creation of the AI Foundation Models Platform, serving the needs of 930+ Million members of LinkedIn. Building Distributed Training Platforms, Machine Learning Pipelines, Feature Pipelines, Metadata engines, etc. Leading the creation of the LinkedIn GAI platform for fine-tuning, experimentation and inference needs. Animesh has more than 20 patents and 50+ publications. Past IBM Watson AI and Data Open Tech CTO, Senior Director, and Distinguished Engineer, with 20+ years experience in the Software industry, and 15+ years in AI, Data, and Cloud Platform. Led globally dispersed teams, managed globally distributed projects, and served as a trusted adviser to Fortune 500 firms. Played a leadership role in creating, designing, and implementing Data and AI engines for AI and ML platforms, led Trusted AI efforts, and drove the strategy and execution for Kubeflow, OpenDataHub, and execution in products like Watson OpenScale and Watson Machine Learning. // Related LinksComposable Memory for GPU Optimization // Bernie Wu // Pod #270 - https://youtu.be/ccaDEFoKwko ~~~~~~~~ ✌️Connect With Us ✌️ ~~~~~~~Catch all episodes, blogs, newsletters, and more: https://go.mlops.community/TYExploreJoin our slack community [https://go.mlops.community/slack]Follow us on X/Twitter [@mlopscommunity](https://x.com/mlopscommunity) or [LinkedIn](https://go.mlops.community/linkedin)] Sign up for the next meetup: [https://go.mlops.community/register]MLOps Swag/Merch: [https://shop.mlops.community/]Connect with Demetrios on LinkedIn: /dpbrinkmConnect with Animesh on LinkedIn: /animeshsingh1 Timestamps:[00:00] Animesh's preferred coffee[00:16] Takeaways[02:12] What is working? [07:00] What's not working?[13:40] LLM vs Rexis Efficiency[21:49] GPU Utilization and Architecture[27:32] GPU reliability concerns[36:50] Memory Bottleneck in AI[41:06] Optimizing LLM Checkpointing[46:51] Checkpoint Offloading and Platform Design[54:55] Workflow Divergence Points[58:41] Wrap up…
 
Building Trust Through Technology: Responsible AI in Practice // MLOps Podcast #298 with Allegra Guinan, Co-founder of Lumiera. Join the Community: https://go.mlops.community/YTJoinIn Get the newsletter: https://go.mlops.community/YTNewsletter // AbstractAllegra joins the podcast to discuss how Responsible AI (RAI) extends beyond traditional pillars like transparency and privacy. While these foundational elements are crucial, true RAI success requires deeply embedding responsible practices into organizational culture and decision-making processes. Drawing from Lumiera's comprehensive approach, Allegra shares how organizations can move from checkbox compliance to genuine RAI integration that drives innovation and sustainable AI adoption. // BioAllegra is a technical leader with a background in managing data and enterprise engineering portfolios. Having built her career bridging technical teams and business stakeholders, she's seen the ins and outs of how decisions are made across organizations. She combines her understanding of data value chains, passion for responsible technology, and practical experience guiding teams through complex implementations into her role as co-founder and CTO of Lumiera. // Related LinksWebsite: https://www.lumiera.ai/Weekly newsletter: https://lumiera.beehiiv.com/ ~~~~~~~~ ✌️Connect With Us ✌️ ~~~~~~~Catch all episodes, blogs, newsletters, and more: https://go.mlops.community/TYExploreJoin our slack community [https://go.mlops.community/slack]Follow us on X/Twitter [@mlopscommunity](https://x.com/mlopscommunity) or [LinkedIn](https://go.mlops.community/linkedin)] Sign up for the next meetup: [https://go.mlops.community/register]MLOps Swag/Merch: [https://shop.mlops.community/]Connect with Demetrios on LinkedIn: /dpbrinkmConnect with Allegra on LinkedIn: /allegraguinan Timestamps:[00:00] Allegra's preferred coffee[00:14] Takeaways[01:11] Responsible AI principles[03:13] Shades of Transparency[07:56] Effective questioning for clarity [11:17] Managing stakeholder input effectively[14:06] Business to Tech Translation[19:30] Responsible AI challenges[23:59] Successful plan vs Retroactive responsibility[28:38] AI product robustness explained [30:44] AI transparency vs Engagement[34:10] Efficient interaction preferences[37:57] Preserving human essence[39:51] Conflict and growth in life[46:02] Subscribe to Allegra's Weekly Newsletter!…
 
I Let An AI Play Pokémon! - Claude plays Pokémon Creator // MLOps Podcast #295 with David Hershey, Member of Technical Staff at Anthropic. Join the Community: https://go.mlops.community/YTJoinIn Get the newsletter: https://go.mlops.community/YTNewsletter // AbstractDemetrios chats with David Hershey from Anthropic's Applied AI team about his agent-powered Pokémon project using Claude. They explore agent frameworks, prompt optimization vs. fine-tuning, and AI's growing role in software, legal, and accounting fields. David highlights how managed AI platforms simplify deployment, making advanced AI more accessible. // BioDavid Hershey devoted most of his career to machine learning infrastructure and trying to abstract away the hairy systems complexity that gets in the way of people building amazing ML applications. // Related LinksWebsite: https://www.davidhershey.com/ ~~~~~~~~ ✌️Connect With Us ✌️ ~~~~~~~Catch all episodes, blogs, newsletters, and more: https://go.mlops.community/TYExploreJoin our slack community [https://go.mlops.community/slack]Follow us on X/Twitter [@mlopscommunity](https://x.com/mlopscommunity) or [LinkedIn](https://go.mlops.community/linkedin)] Sign up for the next meetup: [https://go.mlops.community/register]MLOps Swag/Merch: [https://shop.mlops.community/]Connect with Demetrios on LinkedIn: /dpbrinkmConnect with David on LinkedIn: /david-hershey-458ab081…
 
From Rules to Reasoning Engines // MLOps Podcast #297 with George Mathew, Managing Director at Insight Partners. Join the Community: https://go.mlops.community/YTJoinIn Get the newsletter: https://go.mlops.community/YTNewsletter // AbstractGeorge Mathew (Insight Partners) joins Demetrios to break down how AI and ML have evolved over the past few years and where they’re headed. He reflects on the major shifts since his last chat with Demetrios, especially how models like ChatGPT have changed the game. George dives into "generational outcomes"—building companies with lasting impact—and the move from rule-based software to AI-driven reasoning engines. He sees AI becoming a core part of all software, fundamentally changing business operations. The chat covers the rise of agent-based systems, the importance of high-quality data, and recent breakthroughs like Deep SEQ, which push AI reasoning further. They also explore AI’s future—its role in software, enterprise adoption, and everyday life. // BioGeorge Mathew is a Managing Director at Insight Partners focused on venture stage investments in AI, ML, Analytics, and Data companies as they are establishing product/market fit. He brings 20+ years of experience developing high-growth technology startups including most recently being CEO of Kespry. Prior to Kespry, George was President & COO of Alteryx where he scaled the company through its IPO (AYX). Previously he held senior leadership positions at SAP and salesforce.com. He has driven company strategy, led product management and development, and built sales and marketing teams. George holds a Bachelor of Science in Neurobiology from Cornell University and a Masters in Business Administration from Duke University, where he was a Fuqua Scholar. // Related LinksWebsite: https://www.insightpartners.com/ ~~~~~~~~ ✌️Connect With Us ✌️ ~~~~~~~Catch all episodes, blogs, newsletters, and more: https://go.mlops.community/TYExploreJoin our slack community [https://go.mlops.community/slack]Follow us on X/Twitter [@mlopscommunity](https://x.com/mlopscommunity) or [LinkedIn](https://go.mlops.community/linkedin)] Sign up for the next meetup: [https://go.mlops.community/register]MLOps Swag/Merch: [https://shop.mlops.community/]Connect with Demetrios on LinkedIn: /dpbrinkmConnect with George on LinkedIn: /gmathew…
 
The Unbearable Lightness of Data // MLOps Podcast #295 with Rohit Krishnan, Chief Product Officer at bodo.ai.Join the Community: https://go.mlops.community/YTJoinIn Get the newsletter: https://go.mlops.community/YTNewsletter // AbstractRohit Krishnan, Chief Product Officer at Bodo.AI, joins Demetrios to discuss AI's evolving landscape. They explore interactive reasoning models, AI's impact on jobs, scalability challenges, and the path to AGI. Rohit also shares insights on Bodo.AI’s open-source move and its impact on data science.// BioBuilding products, writing, messing around with AI pretty much everywhere// Related LinksWebsite: www.strangeloopcanon.comIn life, my kids. Professionally, https://github.com/bodo-ai/Bodo ... Otherwise personally, it's writing every single day at strangeloopcanon.com! ~~~~~~~~ ✌️Connect With Us ✌️ ~~~~~~~Catch all episodes, blogs, newsletters, and more: https://go.mlops.community/TYExploreJoin our slack community [https://go.mlops.community/slack]Follow us on X/Twitter [@mlopscommunity](https://x.com/mlopscommunity) or [LinkedIn](https://go.mlops.community/linkedin)] Sign up for the next meetup: [https://go.mlops.community/register]MLOps Swag/Merch: [https://shop.mlops.community/]Connect with Demetrios on LinkedIn: /dpbrinkmConnect with Rohit on LinkedIn: /rkris…
 
Kubernetes, AI Gateways, and the Future of MLOps // MLOps Podcast #294 with Alexa Griffith, Senior Software Engineer at Bloomberg. Join the Community: https://go.mlops.community/YTJoinIn Get the newsletter: https://go.mlops.community/YTNewsletter // Abstract Alexa shares her journey into software engineering, from early struggles with Airflow and Kubernetes to leading open-source projects like the Envoy AI Gateway. She and Demetrios discuss AI model deployment, tooling differences across tech roles, and the importance of abstraction. They highlight aligning technical work with business goals and improving cross-team communication, offering key insights into MLOps and AI infrastructure. // Bio Alexa Griffith is a Senior Software Engineer at Bloomberg, where she builds scalable inference platforms for machine learning workflows and contributes to open-source projects like KServe. She began her career at Bluecore working in data science infrastructure, and holds an honors degree in Chemistry from the University of Tennessee, Knoxville. She shares her insights through her podcast, Alexa’s Input (AI), technical blogs, and active engagement with the tech community at conferences and meetups. // Related LinksWebsite: https://alexagriffith.com/ Kubecon Keynote about Envoy AI Gateway https://www.youtube.com/watch?v=do1viOk8nok ~~~~~~~~ ✌️Connect With Us ✌️ ~~~~~~~ Catch all episodes, blogs, newsletters, and more: https://go.mlops.community/TYExplore Join our slack community [ https://go.mlops.community/slack ] Follow us on X/Twitter [ @mlopscommunity ][ https://x.com/mlopscommunity ] or LinkedIn [ https://go.mlops.community/linkedin ] Sign up for the next meetup: [ https://go.mlops.community/register ] MLOps Swag/Merch: [ https://shop.mlops.community/ ] Connect with Demetrios on LinkedIn: /dpbrinkm Connect with Alexa on LinkedIn: /alexa-griffith…
 
Future of Software, Agents in the Enterprise, and Inception Stage Company Building // MLOps Podcast 293 with Eliot Durbin, General Partner at Boldstart Ventures.Join the Community: https://go.mlops.community/YTJoinIn Get the newsletter: https://go.mlops.community/YTNewsletter // AbstractKey lessons for founders that are thinking about or starting their companies. 15 years of inception stage investing from how data science companies like Yhat went to market in 2013-14 and how that's evolved, to building companies around OSS frameworks like CrewAI; Eliot share's key learnings and questions for founders starting out. // BioEliot is a General Partner @ boldstart ventures since it's founding in 2010. boldstart an inception stage lead investor for technical founders building the next generation of enterprise companies such as Clay, Snyk, BigID, Kustomer, Superhuman, and CrewAI. // Related LinksWebsite: boldstart.vc https://medium.com/@etdurbin ~~~~~~~~ ✌️Connect With Us ✌️ ~~~~~~~Catch all episodes, blogs, newsletters, and more: https://go.mlops.community/TYExplore Join our slack community [https://go.mlops.community/slack] Follow us on X/Twitter [ @mlopscommunity ]( https://x.com/mlopscommunity ) or LinkedIn ( https://go.mlops.community/linkedin ) Sign up for the next meetup: [ https://go.mlops.community/register ] MLOps Swag/Merch: [ https://shop.mlops.community/ ] Connect with Demetrios on LinkedIn: /dpbrinkm Connect with Eliot on LinkedIn: /eliotdurbin…
 
Agents in Production [Podcast Limited Series] - Episode Five, Dmitri Jarnikov, Chiara Caratelli, and Steven Vester join Demetrios to explore AI agents in e-commerce. They discuss the trade-offs between generic and specialized agents, with Dmitri noting the need for a balance between scalability and precision. Chiara highlights how agents can dynamically blend both approaches, while Steven predicts specialized agents will dominate initially before trust in generic agents grows. The panel also examines how e-commerce platforms may resist but eventually collaborate with AI agents. Trust remains a key factor in adoption, with opportunities emerging for new agent-driven business models. Guest speakers: Dmitri Jarnikov - Senior Director of Data Science at Prosus Chiara Caratelli - Data Scientist at Prosus Group Steven Vester - Head of Product at OLX Host:Demetrios Brinkmann - Founder of MLOps Community ~~~~~~~~ ✌️Connect With Us ✌️ ~~~~~~~ Catch all episodes, blogs, newsletters, and more: https://go.mlops.community/TYExplore Join our slack community [https://go.mlops.community/slack] Follow us on X/Twitter [@mlopscommunity](https://x.com/mlopscommunity) or [LinkedIn](https://go.mlops.community/linkedin)] Sign up for the next meetup: [https://go.mlops.community/register] MLOps Swag/Merch: [https://shop.mlops.community/] Connect with Demetrios on LinkedIn: /dpbrinkm…
 
In Agents in Production [Podcast Limited Series] - Episode Four , Donné Stevenson and Paul van der Boor break down the deployment of a Token Data Analyst agent at Prosus—why, how, and what worked. They discuss the challenges of productionizing the agent, from architecture to mitigating LLM overconfidence, key design choices, the role of pre-checks for clarity, and why they opted for simpler text-based processes over complex recursive methods. Guest speakers: Paul van der Boor - VP AI at Prosus Group Donne Stevenson - Machine Learning Engineer at Prosus Group Host: Demetrios Brinkmann - Founder of MLOps Community ~~~~~~~~ ✌️Connect With Us ✌️ ~~~~~~~ Catch all episodes, blogs, newsletters, and more: https://go.mlops.community/TYExplore Join our slack community [ https://go.mlops.community/slack ] Follow us on X/Twitter [ @mlopscommunity ][ https://x.com/mlopscommunity ] or LinkedIn [ https://go.mlops.community/linkedin ] Sign up for the next meetup: [ https://go.mlops.community/register ] MLOps Swag/Merch: [ https://shop.mlops.community/ ] Connect with Demetrios on LinkedIn: /dpbrinkm…
 
Agents in Production [Podcast Limited Series] - Episode Three explores the concept of web agents—AI-powered systems that interact with the web as humans do, navigating browsers instead of relying solely on APIs. The discussion covers why web agents emerge as a natural step in AI evolution, their advantages over API-based systems, and their potential impact on e-commerce and automation. The conversation also highlights challenges in making websites agent-friendly and envisions a future where agents seamlessly handle tasks like booking flights or ordering food. Guest speakers: Paul van der Boor - VP AI at Prosus Group Chiara Caratelli - Data Scientist at Prosus Group Host: Demetrios Brinkmann - Founder of MLOps Community ~~~~~~~~ ✌️Connect With Us ✌️ ~~~~~~~ Catch all episodes, blogs, newsletters, and more: https://go.mlops.community/TYExplore Join our slack community [ https://go.mlops.community/slack ] Follow us on X/Twitter [ @mlopscommunity ][ https://x.com/mlopscommunity ] or LinkedIn [ https://go.mlops.community/linkedin ] Sign up for the next meetup: [ https://go.mlops.community/register ] MLOps Swag/Merch: [ https://shop.mlops.community/ ] Connect with Demetrios on LinkedIn: /dpbrinkm…
 
In Agents in Production Series - Episode Two , Demetrios, Paul, and Floris explore the latest in Voice AI agents. They discuss real-time voice interactions, OpenAI's real-time Voice API, and real-world deployment challenges. Paul shares insights from iFood’s voice AI tests in Brazil, while Floris highlights technical hurdles like turn detection and language processing. The episode covers broader applications in healthcare and customer service, emphasizing continuous learning and open-source innovation in Voice AI. Guest speakers: Paul van der Boor - VP AI at Prosus Group Floris Fok - AI Engineer at Prosus Group Host:Demetrios Brinkmann - Founder of MLOps Community ~~~~~~~~ ✌️Connect With Us ✌️ ~~~~~~~ Catch all episodes, blogs, newsletters, and more: https://go.mlops.community/TYExplore Join our slack community [ https://go.mlops.community/slack ] Follow us on X/Twitter [ @mlopscommunity ][ https://x.com/mlopscommunity ] or LinkedIn [ https://go.mlops.community/linkedin ] Sign up for the next meetup: [ https://go.mlops.community/register ] MLOps Swag/Merch: [ https://shop.mlops.community/ ] Connect with Demetrios on LinkedIn: /dpbrinkm…
 
In Agents in Production Series - Episode One , Demetrios chats with Paul van der Boor and Floris Fok about the real-world challenges of deploying AI agents across @ProsusGroup of companies. They break down the evolution from simple LLMs to fully interactive systems, tackling scale, UX, and the harsh lessons from failed projects. Packed with insights on what works (and what doesn’t), this episode is a must-listen for anyone serious about AI in production. Guest speakers: Paul van der Boor - VP AI at Prosus Group Floris Fok - AI Engineer at Prosus Group Host:Demetrios Brinkmann - Founder of MLOps Community ~~~~~~~~ ✌️Connect With Us ✌️ ~~~~~~~ Catch all episodes, blogs, newsletters, and more: ⁠https://go.mlops.community/TYExplore⁠ Join our slack community [ ⁠https://go.mlops.community/slack⁠ ] Follow us on X/Twitter [ ⁠@mlopscommunity⁠ ][ ⁠https://x.com/mlopscommunity⁠ ] or LinkedIn [ ⁠https://go.mlops.community/linkedin⁠ ] Sign up for the next meetup: [ ⁠https://go.mlops.community/register⁠ ] MLOps Swag/Merch: [ ⁠https://shop.mlops.community/⁠ ] Connect with Demetrios on LinkedIn: ⁠/dpbrinkm…
 
Alex Milowski is a researcher, developer, entrepreneur , mathematician, and computer scientist .Evolving Workflow Orchestration // MLOps Podcast #291 with Alex Milowski, Entrepreneur and Computer Scientist.// AbstractThere seems to be a shift from workflow languages to code - mostly annotation pythons - happening and getting us. It is a symptom of how complex workflow orchestration has gotten. Is it a dominant trend or will we cycle back to “DAG specifications”? At Stitchfix, we had our own DSL that “compiled” into airflow DAGs and at MicroByre, we used a external workflow langauge. Both had a batch task executor on K8s but at MicroByre, we had human and robot in the loop workflows.// BioDr. Milowski is a serial entrepreneur and computer scientist with experience in a variety of data and machine learning technologies. He holds a PhD in Informatics (Computer Science) from the University of Edinburgh, where he researched large-scale computation over scientific data. Over the years, he's spent many years working on various aspects of workflow orchestration in industry, standardization, and in research.// MLOps Swag/Merch https://shop.mlops.community/ // Related Links Website: https://www.milowski.com/ --------------- ✌️Connect With Us ✌️ -------------Join our slack community: https://go.mlops.community/slack Follow us on Twitter: @mlopscommunity Sign up for the next meetup: https://go.mlops.community/register Catch all episodes, blogs, newsletters, and more: https://mlops.community/ Connect with Demetrios on LinkedIn: https://www.linkedin.com/in/dpbrinkm/ Connect with Alex on LinkedIn: https://www.linkedin.com/in/alexmilowski/…
 
Willem Pienaar is the Co-Founder and CTO of Cleric . He previously worked at Tecton as a Principal Engineer. Willem Pienaar attended the Georgia Institute of Technology. Insights from Cleric: Building an Autonomous AI SRE // MLOps Podcast #289 with Willem Pienaar, CTO & Co-Founder of Cleric.// AbstractIn this MLOps Community Podcast episode, Willem Pienaar, CTO of Cleric, breaks down how they built an autonomous AI SRE that helps engineering teams diagnose production issues. We explore how Cleric builds knowledge graphs for system understanding, and uses existing tools/systems during investigations. We also get into some gnarly challenges around memory, tool integration, and evaluation frameworks, and some lessons learned from deploying to engineering teams.// BioWillem Pienaar, CTO of Cleric, is a builder with a focus on LLM agents, MLOps, and open source tooling. He is the creator of Feast, an open source feature store, and contributed to the creation of both the feature store and MLOps categories.Before starting Cleric, Willem led the open-source engineering team at Tecton and established the ML platform team at Gojek, where he built high-scale ML systems for the Southeast Asian Decacorn.// MLOps Swag/Merch https://shop.mlops.community/ // Related Links Website: willem.co --------------- ✌️Connect With Us ✌️ -------------Join our slack community: https://go.mlops.community/slack Follow us on Twitter: @mlopscommunity Sign up for the next meetup: https://go.mlops.community/register Catch all episodes, blogs, newsletters, and more: https://mlops.community/ Connect with Demetrios on LinkedIn: https://www.linkedin.com/in/dpbrinkm/ Connect with Willem on LinkedIn: https://www.linkedin.com/in/willempienaar/…
 
Vinu Sankar Sadasivan is a CS PhD ... Currently, I am working as a full-time Student Researcher at Google DeepMind on jailbreaking multimodal AI models. Robustness, Detectability, and Data Privacy in AI // MLOps Podcast #289 with Vinu Sankar Sadasivan, Student Researcher at Google DeepMind. // Abstract Recent rapid advancements in Artificial Intelligence (AI) have made it widely applicable across various domains, from autonomous systems to multimodal content generation. However, these models remain susceptible to significant security and safety vulnerabilities. Such weaknesses can enable attackers to jailbreak systems, allowing them to perform harmful tasks or leak sensitive information. As AI becomes increasingly integrated into critical applications like autonomous robotics and healthcare, the importance of ensuring AI safety is growing. Understanding the vulnerabilities in today’s AI systems is crucial to addressing these concerns. // Bio Vinu Sankar Sadasivan is a final-year Computer Science PhD candidate at The University of Maryland, College Park, advised by Prof. Soheil Feizi. His research focuses on Security and Privacy in AI, with a particular emphasis on AI robustness, detectability, and user privacy. Currently, Vinu is a full-time Student Researcher at Google DeepMind, working on jailbreaking multimodal AI models. Previously, Vinu was a Research Scientist intern at Meta FAIR in Paris, where he worked on AI watermarking. Vinu is a recipient of the 2023 Kulkarni Fellowship and has earned several distinctions, including the prestigious Director’s Silver Medal. He completed a Bachelor’s degree in Computer Science & Engineering at IIT Gandhinagar in 2020. Prior to their PhD, Vinu gained research experience as a Junior Research Fellow in the Data Science Lab at IIT Gandhinagar and through internships at Caltech, Microsoft Research India, and IISc. // MLOps Swag/Merch https://shop.mlops.community/ // Related Links Website: https://vinusankars.github.io/ --------------- ✌️Connect With Us ✌️ ------------- Join our slack community: https://go.mlops.community/slack Follow us on Twitter: @mlopscommunity Sign up for the next meetup: https://go.mlops.community/register Catch all episodes, blogs, newsletters, and more: https://mlops.community/ Connect with Demetrios on LinkedIn: https://www.linkedin.com/in/dpbrinkm/ Connect with Richard on LinkedIn: https://www.linkedin.com/in/vinusankars/…
 
Richard Cloete is a computer scientist and a Laukien-Oumuamua Postdoctoral Research Fellow at the Center for Astrophysics, Harvard University. He is a member of the Galileo Project working under the supervision of Professor Avi, having recently held a postdoctoral position at the University of Cambridge, UK. AI & Aliens: New Eyes on Ancient Questions // MLOps Podcast #288 with Richard Cloete, Laukien-Oumuamua Postdoctoral Research Fellow at Harvard University. // Abstract Demetrios speaks with Dr. Richard Cloete, a Harvard computer scientist and founder of SEAQR Robotics, about his AI-driven work in tracking Unidentified Aerial Phenomena (UAPs) through the Galileo Project. Dr. Cloete explains their advanced sensor setup and the challenges of training AI in this niche field, leading to the creation of AeroSynth, a synthetic data tool. He also discusses his collaboration with the Minor Planet Center on using AI to classify interstellar objects and upcoming telescope data. Additionally, he introduces Seeker Robotics, applying similar AI techniques to oceanic research with unmanned vehicles for marine monitoring. The conversation explores AI’s role in advancing our understanding of space and the ocean. // Bio Richard is a computer scientist and Laukien-Oumuamua Postdoctoral Research Fellow at the Center for Astrophysics, Harvard University. As a member of the Galileo Project under Professor Avi Loeb's supervision, he develops AI models for detecting and tracking aerial objects, specializing in Unidentified Anomalous Phenomena (UAP). Beyond UAP research, he collaborates with astronomers at the Minor Planet Center to create AI models for identifying potential interstellar objects using the upcoming Vera C. Rubin Observatory. Richard is also the CEO and co-founder of SEAQR Robotics, a startup developing advanced unmanned surface vehicles to accelerate the discovery of novel life and phenomena in Earth's oceans and atmosphere. Before joining Harvard, he completed a postdoctoral fellowship at the University of Cambridge, UK, where his research explored the intersection of emerging technologies and law.Grew up in Cape Town, South Africa, where I used to build Tesla Coils, plasma globes, radio stethoscopes, microwave guns, AM radios, and bombs... // MLOps Swag/Merch https://shop.mlops.community/ // Related Links Website: www.seaqr.net https://itc.cfa.harvard.edu/people/richard-cloete --------------- ✌️Connect With Us ✌️ ------------- Join our slack community: https://go.mlops.community/slack Follow us on Twitter: @mlopscommunity Sign up for the next meetup: https://go.mlops.community/register Catch all episodes, blogs, newsletters, and more: https://mlops.community/ Connect with Demetrios on LinkedIn: https://www.linkedin.com/in/dpbrinkm/ Connect with Richard on LinkedIn: https://www.linkedin.com/in/richard-cloete/…
 
A software engineer based in Delft, Alex Strick van Linschoten recently built Ekko, an open-source framework for adding real-time infrastructure and in-transit message processing to web applications. With years of experience in Ruby, JavaScript, Go, PostgreSQL, AWS, and Docker, I bring a versatile skill set to the table. I hold a PhD in History, have authored books on Afghanistan, and currently work as an ML Engineer at ZenML . Real LLM Success Stories: How They Actually Work // MLOps Podcast #287 with Alex Strick van Linschoten, ML Engineer at ZenML. // Abstract Alex Strick van Linschoten, a machine learning engineer at ZenML, joins the MLOps Community podcast to discuss his comprehensive database of real-world LLM use cases. Drawing inspiration from Evidently AI, Alex created the database to organize fragmented information on LLM usage, covering everything from common chatbot implementations to innovative applications across sectors. They discuss the technical challenges and successes in deploying LLMs, emphasizing the importance of foundational MLOps practices. The episode concludes with a call for community contributions to further enrich the database and collective knowledge of LLM applications. // Bio Alex is a Software Engineer based in the Netherlands, working as a Machine Learning Engineer at ZenML. He previously was awarded a PhD in History (specialism: War Studies) from King's College London and has authored several critically acclaimed books based on his research work in Afghanistan. // MLOps Swag/Merch https://shop.mlops.community/ // Related Links Website: https://mlops.systems https://www.zenml.io/llmops-database https://www.zenml.io/llmops-database https://www.zenml.io/blog/llmops-in-production-457-case-studies-of-what-actually-works https://www.zenml.io/blog/llmops-lessons-learned-navigating-the-wild-west-of-production-llms https://www.zenml.io/blog/demystifying-llmops-a-practical-database-of-real-world-generative-ai-implementations https://huggingface.co/datasets/zenml/llmops-database --------------- ✌️Connect With Us ✌️ ------------- Join our slack community: https://go.mlops.community/slack Follow us on Twitter: @mlopscommunity Sign up for the next meetup: https://go.mlops.community/register Catch all episodes, blogs, newsletters, and more: https://mlops.community/ Connect with Demetrios on LinkedIn: https://www.linkedin.com/in/dpbrinkm/ Connect with Alex on LinkedIn: https://www.linkedin.com/in/strickvl…
 
Loading …

ברוכים הבאים אל Player FM!

Player FM סורק את האינטרנט עבור פודקאסטים באיכות גבוהה בשבילכם כדי שתהנו מהם כרגע. זה יישום הפודקאסט הטוב ביותר והוא עובד על אנדרואיד, iPhone ואינטרנט. הירשמו לסנכרון מנויים במכשירים שונים.

 

icon Daily Deals
icon Daily Deals
icon Daily Deals

מדריך עזר מהיר

האזן לתוכנית הזו בזמן שאתה חוקר
הפעלה