התחל במצב לא מקוון עם האפליקציה Player FM !
פודקאסטים ששווה להאזין
בחסות


Designing Reliable AI Systems with DSPy (w/ Omar Khattab)
Manage episode 433315136 series 3446693
In this episode of Neural Search Talks, we're chatting with Omar Khattab, the author behind popular IR & LLM frameworks like ColBERT and DSPy. Omar describes the current state of using AI models in production systems, highlighting how thinking at the right level of abstraction with the right tools for optimization can deliver reliable solutions that extract the most out of the current generation of models. He also lays out his vision for a future of Artificial Programmable Intelligence (API), rather than jumping on the hype of Artificial General Intelligence (AGI), where the goal would be to build systems that effectively integrate AI, with self-improving mechanisms that allow the developers to focus on the design and the problem, rather than the optimization of the lower-level hyperparameters. Timestamps: 0:00 Introduction with Omar Khattab 1:14 How to reliably integrate LLMs in production-grade software 12:19 DSPy's philosophy differences from agentic approaches 14:55 Omar's background in IR that helped him pivot to DSPy 25:47 The strengths of DSPy's optimization framework 39:22 How DSPy has reimagined modularity in AI systems 45:45 The future of using AI models for self-improvement 49:41 How open-sourcing a project like DSPy influences its development 52:32 Omar's vision for the future of AI and his research agenda 59:12 Outro
21 פרקים
Manage episode 433315136 series 3446693
In this episode of Neural Search Talks, we're chatting with Omar Khattab, the author behind popular IR & LLM frameworks like ColBERT and DSPy. Omar describes the current state of using AI models in production systems, highlighting how thinking at the right level of abstraction with the right tools for optimization can deliver reliable solutions that extract the most out of the current generation of models. He also lays out his vision for a future of Artificial Programmable Intelligence (API), rather than jumping on the hype of Artificial General Intelligence (AGI), where the goal would be to build systems that effectively integrate AI, with self-improving mechanisms that allow the developers to focus on the design and the problem, rather than the optimization of the lower-level hyperparameters. Timestamps: 0:00 Introduction with Omar Khattab 1:14 How to reliably integrate LLMs in production-grade software 12:19 DSPy's philosophy differences from agentic approaches 14:55 Omar's background in IR that helped him pivot to DSPy 25:47 The strengths of DSPy's optimization framework 39:22 How DSPy has reimagined modularity in AI systems 45:45 The future of using AI models for self-improvement 49:41 How open-sourcing a project like DSPy influences its development 52:32 Omar's vision for the future of AI and his research agenda 59:12 Outro
21 פרקים
כל הפרקים
×
1 AGI vs ASI: The future of AI-supported decision making with Louis Rosenberg 54:42

1 EXAONE 3.0: An Expert AI for Everyone (with Hyeongu Yun) 24:57

1 Zeta-Alpha-E5-Mistral: Finetuning LLMs for Retrieval (with Arthur Câmara) 19:35

1 ColPali: Document Retrieval with Vision-Language Models only (with Manuel Faysse) 34:48

1 Using LLMs in Information Retrieval (w/ Ronak Pradeep) 22:15

1 Designing Reliable AI Systems with DSPy (w/ Omar Khattab) 59:57

1 The Power of Noise (w/ Florin Cuconasu) 11:45

1 Benchmarking IR Models (w/ Nandan Thakur) 21:55

1 Baking the Future of Information Retrieval Models 27:05

1 Hacking JIT Assembly to Build Exascale AI Infrastructure 38:04

1 The Promise of Language Models for Search: Generative Information Retrieval 1:07:31

1 Task-aware Retrieval with Instructions 1:11:13

1 Generating Training Data with Large Language Models w/ Special Guest Marzieh Fadaee 1:16:14

1 ColBERT + ColBERTv2: late interaction at a reasonable inference cost 57:30

1 Evaluating Extrapolation Performance of Dense Retrieval: How does DR compare to cross encoders when it comes to generalization? 58:30

1 Open Pre-Trained Transformer Language Models (OPT): What does it take to train GPT-3? 47:12

1 Few-Shot Conversational Dense Retrieval (ConvDR) w/ special guest Antonios Krasakis 1:23:11

1 Transformer Memory as a Differentiable Search Index: memorizing thousands of random doc ids works!? 1:01:40

1 Learning to Retrieve Passages without Supervision: finally unsupervised Neural IR? 59:10

1 The Curse of Dense Low-Dimensional Information Retrieval for Large Index Sizes 54:13

1 Shallow Pooling for Sparse Labels: the shortcomings of MS MARCO 1:07:17
ברוכים הבאים אל Player FM!
Player FM סורק את האינטרנט עבור פודקאסטים באיכות גבוהה בשבילכם כדי שתהנו מהם כרגע. זה יישום הפודקאסט הטוב ביותר והוא עובד על אנדרואיד, iPhone ואינטרנט. הירשמו לסנכרון מנויים במכשירים שונים.