תוכן מסופק על ידי O'Reilly Radar. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי O'Reilly Radar או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.
Player FM - אפליקציית פודקאסט התחל במצב לא מקוון עם האפליקציה Player FM !
Retailers are facing a rapidly evolving landscape where consumer expectations, AI advancements, and social media platforms like TikTok are redefining engagement. It feels like the holiday shopping season just ended, but when do retailers start planning for the next one, and some retailers already behind the curve for this season? Joining us today is Carey Cockrum, Director of Consulting at Cella by Randstad Digital, where she helps major brands and marketing teams optimize their strategies with data-driven insights, AI-powered content creation, and cutting-edge retail marketing trends. With the holidays just around the corner, she’s here to share what’s next for retail marketing, campaign optimization, and how brands can stay ahead in a hyper-competitive space. ABOUT CAREY COCKRUM Carey has been a part of the Creative Agency space for nearly 30 years. She has served as Designer, Creative Director, Creative Operations Lead and Agency Lead in both internal and external agencies (big and small). Carey has worked directly with C-suite stakeholders to understand organizational strategies that inform effective creative solutions. She is a bit of a data nerd and loves demonstrating results. Brands she’s supported include Fruit of the Loom, Wendy’s and Humana. In her free time, she enjoys going back to her creative roots through painting and drawing. She also spends her time improving upon the house she lives in today in Southern, MI - inside and out. RESOURCES Catch the future of e-commerce at eTail Boston, August 11-14, 2025. Register now: https://bit.ly/etailboston and use code PARTNER20 for 20% off for retailers and brands Don't Miss MAICON 2025, October 14-16 in Cleveland - the event bringing together the brights minds and leading voices in AI. Use Code AGILE150 for $150 off registration. Go here to register: https://bit.ly/agile150 Connect with Greg on LinkedIn: https://www.linkedin.com/in/gregkihlstrom Don't miss a thing: get the latest episodes, sign up for our newsletter and more: https://www.theagilebrand.show Check out The Agile Brand Guide website with articles, insights, and Martechipedia, the wiki for marketing technology: https://www.agilebrandguide.com The Agile Brand podcast is brought to you by TEKsystems. Learn more here: https://www.teksystems.com/versionnextnow The Agile Brand is produced by Missing Link—a Latina-owned strategy-driven, creatively fueled production co-op. From ideation to creation, they craft human connections through intelligent, engaging and informative content. https://www.missinglink.company…
תוכן מסופק על ידי O'Reilly Radar. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי O'Reilly Radar או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.
In this episode of the Data Show, I spoke with Kartik Hosanagar, professor of technology and digital business, and professor of marketing at The Wharton School of the University of Pennsylvania. Hosanagar is also the author of a newly released book, "A Human’s Guide to Machine Intelligence," an interesting tour through the recent evolution of AI applications, which draws from his extensive experience at the intersection of business and technology.
תוכן מסופק על ידי O'Reilly Radar. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי O'Reilly Radar או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.
In this episode of the Data Show, I spoke with Kartik Hosanagar, professor of technology and digital business, and professor of marketing at The Wharton School of the University of Pennsylvania. Hosanagar is also the author of a newly released book, "A Human’s Guide to Machine Intelligence," an interesting tour through the recent evolution of AI applications, which draws from his extensive experience at the intersection of business and technology.
In this episode of the Data Show, I speak with Peter Bailis, founder and CEO of Sisu, a startup that is using machine learning to improve operational analytics. Bailis is also an assistant professor of computer science at Stanford University, where he conducts research into data-intensive systems and where he is co-founder of the DAWN Lab.…
In this episode of the Data Show, I speak with Arun Kejariwal of Facebook and Ira Cohen of Anodot (full disclosure: I’m an advisor to Anodot). This conversation stemmed from a recent online panel discussion we did, where we discussed time series data, and, specifically, anomaly detection and forecasting. Both Kejariwal (at Machine Zone, Twitter, and Facebook) and Cohen (at HP and Anodot) have extensive experience building analytic and machine learning solutions at large scale, and both have worked extensively with time-series data. The growing interest in AI and machine learning has not been confined to computer vision, speech technologies, or text. In the enterprise, there is strong interest in using similar automation tools for temporal data and time series.…
In this episode of the Data Show, I speak with Michael Mahoney, a member of RISELab, the International Computer Science Institute, and the Department of Statistics at UC Berkeley. A physicist by training, Mahoney has been at the forefront of many important problems in large-scale data analysis. On the theoretical side, his works spans algorithmic and statistical methods for matrices, graphs, regression, optimization, and related problems. On the applications side, he has contributed to systems used for internet and social media analysis, social network analysis, as well as for a host of applications in the physical and life sciences. Most recently, he has been working on deep neural networks, specifically developing theoretical methods and practical diagnostic tools that should be helpful to practitioners who use deep learning.…
In this episode of the Data Show, I speak with Kesha Williams, technical instructor at A Cloud Guru, a training company focused on cloud computing. As a full stack web developer, Williams became intrigued by machine learning and started teaching herself the ML tools on Amazon Web Services. Fast forward to today, Williams has built some well-regarded Alexa skills, mastered ML services on AWS, and has now firmly added machine learning to her developer toolkit.…
In this episode of the Data Show, I speak with Alex Ratner, project lead for Stanford’s Snorkel open source project; Ratner also recently garnered a faculty position at the University of Washington and is currently working on a company supporting and extending the Snorkel project. Snorkel is a framework for building and managing training data. Based on our survey from earlier this year, labeled data remains a key bottleneck for organizations building machine learning applications and services. Ratner was a guest on the podcast a little over two years ago when Snorkel was a relatively new project. Since then, Snorkel has added more features, expanded into computer vision use cases, and now boasts many users, including Google, Intel, IBM, and other organizations. Along with his thesis advisor professor Chris Ré of Stanford, Ratner and his collaborators have long championed the importance of building tools aimed squarely at helping teams build and manage training data. With today’s release of Snorkel version 0.9, we are a step closer to having a framework that enables the programmatic creation of training data sets.…
In this interview, Tim Craig and fellow Googler Gustavo Franco, a site reliability engineer (SRE), discuss the wide range of events that qualify as “incidents;” the need for a conscious, robust, and well-defined process for understanding them; the role of training; and how to get buy-in from management so you can spread incident response training throughout an organization.…
In this episode of the Data Show, I speak with Cassie Kozyrkov, technical director and chief decision scientist at Google Cloud. She describes "decision intelligence" as an interdisciplinary field concerned with all aspects of decision-making, and which combines data science with the behavioral sciences. Most recently she has been focused on developing best practices that can help practitioners make safe, effective use of AI and data. Kozyrkov uses her platform to help data scientists develop skills that will enable them to connect data and AI with their organizations' core businesses. We had a great conversation spanning many topics, including: How data science can be more useful The importance of the human side of data The leadership talent shortage in data science Is data science a bubble?…
In this episode of the Data Show, I spoke with Roger Chen, co-founder and CEO of Computable Labs, a startup focused on building tools for the creation of data networks and data exchanges. Chen has also served as co-chair of O'Reilly's Artificial Intelligence Conference since its inception in 2016. This conversation took place the day after Chen and his collaborators released an interesting new white paper, "Fair value and decentralized governance of data." Current-generation AI and machine learning technologies rely on large amounts of data, and to the extent they can use their large user bases to create “data silos,” large companies in large countries (like the U.S. and China) enjoy a competitive advantage. With that said, we are awash in articles about the dangers posed by these data silos. Privacy and security, disinformation, bias, and a lack of transparency and control are just some of the issues that have plagued the perceived owners of “data monopolies.”…
In this week's episode of the Data Show, we're featuring an interview Data Show host Ben Lorica participated in for the Software Engineering Daily Podcast, where he was interviewed by Jeff Meyerson. Their conversation mainly centered around data engineering, data architecture and infrastructure, and machine learning (ML).…
In this episode of the Data Show, I spoke with Nick Pentreath, principal engineer at IBM. Pentreath was an early and avid user of Apache Spark, and he subsequently became a Spark committer and PMC member. Most recently his focus has been on machine learning, particularly deep learning, and he is part of a group within IBM focused on building open source tools that enable end-to-end machine learning pipelines.…
At Google’s 2019 Cloud Next conference, I sat down with Stephen Thorne, site reliability engineer on Google’s customer reliability engineering team and co-author of "The Site Reliability Workbook," to talk about how organizations, both large and small, can use SRE to reduce operational costs, improve reliability, and create productive cross-functional teams.…
In this episode of the Data Show, I spoke with Dhruba Borthakur (co-founder and CTO) and Shruti Bhat (SVP of Marketing) of Rockset, a startup focused on building solutions for interactive data science and live applications. Borthakur was the founding engineer of HDFS and creator of RocksDB, while Bhat is an experienced product and marketing executive focused on enterprise software and data products. Their new startup is focused on a few trends I’ve recently been thinking about, including the re-emergence of real-time analytics, and the hunger for simpler data architectures and tools. Borthakur exemplifies the need for companies to continually evaluate new technologies: while he was the founding engineer for HDFS, these days he mostly works with object stores like S3.…
In this episode of the Data Show, I spoke with Jike Chong, chief data scientist at Acorns, a startup focused on building tools for micro-investing. Chong has extensive experience using analytics and machine learning in financial services, and he has experience building data science teams in the U.S. and in China. We had a great conversation spanning many topics, including: Potential applications of data science in financial services. The current state of data science in financial services in both the U.S. and China. His experience recruiting, training, and managing data science teams in both the U.S. and China.…
In this episode of the Data Show, I spoke with Jeff Jonas, CEO, founder and chief scientist of Senzing, a startup focused on making real-time entity resolution technologies broadly accessible. He was previously a fellow and chief scientist of context computing at IBM. Entity resolution (ER) refers to techniques and tools for identifying and linking manifestations of the same entity/object/individual. Ironically, ER itself has many different names (e.g., record linkage, duplicate detection, object consolidation/reconciliation, etc.). ER is an essential first step in many domains, including marketing (cleaning up databases), law enforcement (background checks and counterterrorism), and financial services and investing. Knowing exactly who your customers are is an important task for security, fraud detection, marketing, and personalization. The proliferation of data sources and services has made ER very challenging in the internet age. In addition, many applications now increasingly require near real-time entity resolution. We had a great conversation spanning many topics including: Why ER is interesting and challenging How ER technologies have evolved over the years How Senzing is working to democratize ER by making real-time AI technologies accessible to developers Some early use cases for Senzing’s technologies Some items on their research agenda…
In this episode of the Data Show, I spoke with Neelesh Salian, software engineer at Stitch Fix, a company that combines machine learning and human expertise to personalize shopping. As companies integrate machine learning into their products and systems, there are important foundational technologies that come into play. This shouldn’t come as a shock, as current machine learning and AI technologies require large amounts of data—specifically, labeled data for training models. There are also many other considerations—including security, privacy, reliability/safety—that are encouraging companies to invest in a suite of data technologies. In conversations with data engineers, data scientists, and AI researchers, the need for solutions that can help track data lineage and provenance keeps popping up. There are several San Francisco Bay Area companies that have embarked on building data lineage systems—including Salian and his colleagues at Stitch Fix. I wanted to find out how they arrived at the decision to build such a system and what capabilities they are building into it.…
In this episode of the Data Show, I spoke with Avner Braverman, co-founder and CEO of Binaris, a startup that aims to bring serverless to web-scale and enterprise applications. This conversation took place shortly after the release of a seminal paper from UC Berkeley (“Cloud Programming Simplified: A Berkeley View on Serverless Computing”), and this paper seeded a lot of our conversation during this episode.…
In this episode of the Data Show, I spoke with Forough Poursabzi-Sangdeh, a postdoctoral researcher at Microsoft Research New York City. Poursabzi works in the interdisciplinary area of interpretable and interactive machine learning. As models and algorithms become more widespread, many important considerations are becoming active research areas: fairness and bias, safety and reliability, security and privacy, and Poursabzi’s area of focus—explainability and interpretability.…
In this episode of the Data Show, I spoke with Kartik Hosanagar, professor of technology and digital business, and professor of marketing at The Wharton School of the University of Pennsylvania. Hosanagar is also the author of a newly released book, "A Human’s Guide to Machine Intelligence," an interesting tour through the recent evolution of AI applications, which draws from his extensive experience at the intersection of business and technology.…
In this episode of the Data Show, I spoke with P.W. Singer, strategist and senior fellow at the New America Foundation, and a contributing editor at Popular Science. He is co-author of an excellent new book, LikeWar: The Weaponization of Social Media, which explores how social media has changed war, politics, and business. The book is essential reading for anyone interested in how social media has become an important new battlefield in a diverse set of domains and settings.…
In this episode of the Data Show, I spoke with Siwei Lyu, associate professor of computer science at the University at Albany, State University of New York. Lyu is a leading expert in digital media forensics, a field of research into tools and techniques for analyzing the authenticity of media files. Over the past year, there have been many stories written about the rise of tools for creating fake media (mainly images, video, audio files). Researchers in digital image forensics haven’t exactly been standing still, though. As Lyu notes, advances in machine learning and deep learning have also found a receptive audience among the forensics community.…
In this episode of the Data Show, I spoke with Maryam Jahanshahi, research scientist at TapRecruit, a startup that uses machine learning and analytics to help companies recruit more effectively. In an upcoming survey, we found that a “skills gap” or “lack of skilled people” was one of the main bottlenecks holding back adoption of AI technologies. Many companies are exploring a variety of internal and external programs to train staff on new tools and processes. The other route is to hire new talent. But recent reports suggest that demand for data professionals is strong and competition for experienced talent is fierce. Jahanshahi and her team are building natural language and statistical tools that can help companies improve their ability to attract and retain talent across many key areas.…
In this episode of the Data Show, I spoke with Andrew Burt, chief privacy officer and legal engineer at Immuta, a company building data management tools tuned for data science. Burt and cybersecurity pioneer Daniel Geer recently released a must-read white paper (“Flat Light”) that provides a great framework for how to think about information security in the age of big data and AI. They list important changes to the information landscape and offer suggestions on how to alleviate some of the new risks introduced by the rise of machine learning and AI. We discussed their new white paper, cybersecurity (Burt was previously a special advisor at the FBI), and an exciting new Strata Data tutorial that Burt will be co-teaching in March.…
In this episode of the Data Show, I spoke with Haoyuan Li, CEO and founder of Alluxio, a startup commercializing the open source project with the same name (full disclosure: I’m an advisor to Alluxio). Our discussion focuses on the state of Alluxio (the open source project that has roots in UC Berkeley’s AMPLab), specifically emerging use cases here and in China. Given the large-scale use in China, I also wanted to get Li’s take on the state of data and AI technologies in Beijing and other parts of China.…
For the end-of-year holiday episode of the Data Show, I turned the tables on Data Show host Ben Lorica to talk about trends in big data, machine learning, and AI, and what to look for in 2019. Lorica also showcased some highlights from our upcoming Strata Data and Artificial Intelligence conferences.…
In this episode of the Data Show, I spoke with Alex Wong, associate professor at the University of Waterloo, and co-founder of DarwinAI, a startup that uses AI to address foundational challenges with deep learning in the enterprise. As the use of machine learning and analytics become more widespread, we’re beginning to see tools that enable data scientists and data engineers to scale and tackle many more problems and maintain more systems. This includes automation tools for the many stages involved in data science, including data preparation, feature engineering, model selection, and hyperparameter tuning, as well as tools for data engineering and data operations. Wong and his collaborators are building solutions for enterprises, including tools for generating efficient neural networks and for the performance analysis of networks deployed to edge devices.…
In this episode of the Data Show, I spoke with Vitaly Gordon, VP of data science and engineering at Salesforce. As the use of machine learning becomes more widespread, we need tools that will allow data scientists to scale so they can tackle many more problems and help many more people. We need automation tools for the many stages involved in data science, including data preparation, feature engineering, model selection and hyperparameter tuning, as well as monitoring. I wanted the perspective of someone who is already faced with having to support many models in production. The proliferation of models is still a theoretical consideration for many data science teams, but Gordon and his colleagues at Salesforce already support hundreds of thousands of customers who need custom models built on custom data. They recently took their learnings public and open sourced TransmogrifAI, a library for automated machine learning for structured data, which sits on top of Apache Spark.…
In this episode of the Data Show, I spoke with Francesca Lazzeri, an AI and machine learning scientist at Microsoft, and her colleague Jaya Mathew, a senior data scientist at Microsoft. We conducted a couple of surveys this year—“How Companies Are Putting AI to Work Through Deep Learning” and “The State of Machine Learning Adoption in the Enterprise”—and we found that while many companies are still in the early stages of machine learning adoption, there’s considerable interest in moving forward with projects in the near future. Lazzeri and Mathew spend a considerable amount of time interacting with companies that are beginning to use machine learning and have experiences that span many different industries and applications. I wanted to learn some of the processes and tools they use when they assist companies in beginning their machine learning journeys.…
In this episode of the Data Show, I spoke with Alon Kaufman, CEO and co-founder of Duality Technologies, a startup building tools that will allow companies to apply analytics and machine learning to encrypted data. In a recent talk, I described the importance of data, various methods for estimating the value of data, and emerging tools for incentivizing data sharing across organizations. As I noted, the main motivation for improving data liquidity is the growing importance of machine learning. We’re all familiar with the importance of data security and privacy, but probably not as many people are aware of the emerging set of tools at the intersection of machine learning and security. Kaufman and his stellar roster of co-founders are doing some of the most interesting work in this area.…
In this episode of the Data Show, I spoke with Jacob Ward, a Berggruen Fellow at Stanford University. Ward has an extensive background in journalism, mainly covering topics in science and technology, at National Geographic, Al Jazeera, Discovery Channel, BBC, Popular Science, and many other outlets. Most recently, he’s become interested in the interplay between research in psychology, decision-making, and AI systems. He’s in the process of writing a book on these topics, and was gracious enough to give an informal preview by way of this podcast conversation.…
In this episode of the Data Show, I spoke with Sharad Goel, assistant professor at Stanford, and his student Sam Corbett-Davies. They recently wrote a survey paper, “A Critical Review of Fair Machine Learning,” where they carefully examined the standard statistical tools used to check for fairness in machine learning models. It turns out that each of the standard approaches (anti-classification, classification parity, and calibration) has limitations, and their paper is a must-read tour through recent research in designing fair algorithms. We talked about their key findings, and, most importantly, I pressed them to list a few best practices that analysts and industrial data scientists might want to consider.…
ברוכים הבאים אל Player FM!
Player FM סורק את האינטרנט עבור פודקאסטים באיכות גבוהה בשבילכם כדי שתהנו מהם כרגע. זה יישום הפודקאסט הטוב ביותר והוא עובד על אנדרואיד, iPhone ואינטרנט. הירשמו לסנכרון מנויים במכשירים שונים.