Artwork

תוכן מסופק על ידי Carnegie Mellon University Software Engineering Institute and Members of Technical Staff at the Software Engineering Institute. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Carnegie Mellon University Software Engineering Institute and Members of Technical Staff at the Software Engineering Institute או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.
Player FM - אפליקציית פודקאסט
התחל במצב לא מקוון עם האפליקציה Player FM !

What Could Possibly Go Wrong? Safety Analysis for AI Systems

36:14
 
שתפו
 

Manage episode 516925303 series 2487640
תוכן מסופק על ידי Carnegie Mellon University Software Engineering Institute and Members of Technical Staff at the Software Engineering Institute. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Carnegie Mellon University Software Engineering Institute and Members of Technical Staff at the Software Engineering Institute או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.

How can you ever know whether an LLM is safe to use? Even self-hosted LLM systems are vulnerable to adversarial prompts left on the internet and waiting to be found by system search engines. These attacks and others exploit the complexity of even seemingly secure AI systems.

In our latest podcast from the Carnegie Mellon University Software Engineering Institute (SEI), David Schulker and Matthew Walsh, both senior data scientists in the SEI's CERT Division, sit down with Thomas Scanlon, lead of the CERT Data Science Technical Program, to discuss their work on System Theoretic Process Analysis, or STPA, a hazard-analysis technique uniquely suitable for dealing with AI complexity when assuring AI systems.

  continue reading

425 פרקים

Artwork
iconשתפו
 
Manage episode 516925303 series 2487640
תוכן מסופק על ידי Carnegie Mellon University Software Engineering Institute and Members of Technical Staff at the Software Engineering Institute. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Carnegie Mellon University Software Engineering Institute and Members of Technical Staff at the Software Engineering Institute או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.

How can you ever know whether an LLM is safe to use? Even self-hosted LLM systems are vulnerable to adversarial prompts left on the internet and waiting to be found by system search engines. These attacks and others exploit the complexity of even seemingly secure AI systems.

In our latest podcast from the Carnegie Mellon University Software Engineering Institute (SEI), David Schulker and Matthew Walsh, both senior data scientists in the SEI's CERT Division, sit down with Thomas Scanlon, lead of the CERT Data Science Technical Program, to discuss their work on System Theoretic Process Analysis, or STPA, a hazard-analysis technique uniquely suitable for dealing with AI complexity when assuring AI systems.

  continue reading

425 פרקים

כל הפרקים

×
 
Loading …

ברוכים הבאים אל Player FM!

Player FM סורק את האינטרנט עבור פודקאסטים באיכות גבוהה בשבילכם כדי שתהנו מהם כרגע. זה יישום הפודקאסט הטוב ביותר והוא עובד על אנדרואיד, iPhone ואינטרנט. הירשמו לסנכרון מנויים במכשירים שונים.

 

מדריך עזר מהיר

האזן לתוכנית הזו בזמן שאתה חוקר
הפעלה