Artwork

תוכן מסופק על ידי Jon Krohn. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Jon Krohn או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.
Player FM - אפליקציית פודקאסט
התחל במצב לא מקוון עם האפליקציה Player FM !

909: Causal AI, with Dr. Robert Usazuwa Ness

1:22:27
 
שתפו
 

Manage episode 497194931 series 1278026
תוכן מסופק על ידי Jon Krohn. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Jon Krohn או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.

Researcher at Microsoft Robert Usazuwa Ness talks to Jon Krohn about how to achieve causality in AI with correlation-based learning, the right libraries, and handling statistical inference. When dealing with causal AI, Robert notes how important it is to keep aware of variables in the data that may mislead us and force inaccurate assumptions. Not all variables will be useful. It is essential, then, that any assumptions are grounded in a deeper understanding of how the data were gathered, and not what appears in the dataset. Listen to the episode to hear how you can apply causal AI to your projects.

Additional materials: ⁠⁠⁠⁠⁠⁠⁠⁠www.superdatascience.com/907⁠⁠⁠⁠

This episode is brought to you by Trainium2, the latest AI chip from AWS and by the Dell AI Factory with NVIDIA.

Interested in sponsoring a SuperDataScience Podcast episode? Email [email protected] for sponsorship information.

  continue reading

1237 פרקים

Artwork
iconשתפו
 
Manage episode 497194931 series 1278026
תוכן מסופק על ידי Jon Krohn. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Jon Krohn או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.

Researcher at Microsoft Robert Usazuwa Ness talks to Jon Krohn about how to achieve causality in AI with correlation-based learning, the right libraries, and handling statistical inference. When dealing with causal AI, Robert notes how important it is to keep aware of variables in the data that may mislead us and force inaccurate assumptions. Not all variables will be useful. It is essential, then, that any assumptions are grounded in a deeper understanding of how the data were gathered, and not what appears in the dataset. Listen to the episode to hear how you can apply causal AI to your projects.

Additional materials: ⁠⁠⁠⁠⁠⁠⁠⁠www.superdatascience.com/907⁠⁠⁠⁠

This episode is brought to you by Trainium2, the latest AI chip from AWS and by the Dell AI Factory with NVIDIA.

Interested in sponsoring a SuperDataScience Podcast episode? Email [email protected] for sponsorship information.

  continue reading

1237 פרקים

כל הפרקים

×
 
Loading …

ברוכים הבאים אל Player FM!

Player FM סורק את האינטרנט עבור פודקאסטים באיכות גבוהה בשבילכם כדי שתהנו מהם כרגע. זה יישום הפודקאסט הטוב ביותר והוא עובד על אנדרואיד, iPhone ואינטרנט. הירשמו לסנכרון מנויים במכשירים שונים.

 

מדריך עזר מהיר

האזן לתוכנית הזו בזמן שאתה חוקר
הפעלה