Artwork

תוכן מסופק על ידי Jon Krohn. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Jon Krohn או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.
Player FM - אפליקציית פודקאסט
התחל במצב לא מקוון עם האפליקציה Player FM !

863: TabPFN: Deep Learning for Tabular Data (That Actually Works!), with Prof. Frank Hutter

1:06:06
 
שתפו
 

Manage episode 467254505 series 2532807
תוכן מסופק על ידי Jon Krohn. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Jon Krohn או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.

Jon Krohn talks tabular data with Frank Hutter, Professor of Artificial Intelligence at Universität Freiburg in Germany. Despite the great steps that deep learning has made in analysing images, audio, and natural language, tabular data has remained its insurmountable obstacle. In this episode, Frank Hutter details the path he has found around this obstacle even with limited data by using a ground-breaking transformer architecture. Named TabPFN, this approach is vastly outperforming other architectures, as testified by a write up of TabPFN’s capabilities in Nature. Frank talks about his work on version 2 of TabPFN, the architecture’s cross-industry applicability, and how TabPFN is able to return accurate results with synthetic data.

This episode is brought to you by ODSC, the Open Data Science Conference. Interested in sponsoring a SuperDataScience Podcast episode? Email natalie@superdatascience.com for sponsorship information.

In this episode you will learn:

  • (05:57) All about the TabPFN architecture
  • (21:27) Use cases for Bayesian inference
  • (35:07) On getting published in Nature
  • (44:03) How TabPFN handles time series data
  • (51:52) All about Prior Labs

Additional materials: www.superdatascience.com/863

  continue reading

976 פרקים

Artwork
iconשתפו
 
Manage episode 467254505 series 2532807
תוכן מסופק על ידי Jon Krohn. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Jon Krohn או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.

Jon Krohn talks tabular data with Frank Hutter, Professor of Artificial Intelligence at Universität Freiburg in Germany. Despite the great steps that deep learning has made in analysing images, audio, and natural language, tabular data has remained its insurmountable obstacle. In this episode, Frank Hutter details the path he has found around this obstacle even with limited data by using a ground-breaking transformer architecture. Named TabPFN, this approach is vastly outperforming other architectures, as testified by a write up of TabPFN’s capabilities in Nature. Frank talks about his work on version 2 of TabPFN, the architecture’s cross-industry applicability, and how TabPFN is able to return accurate results with synthetic data.

This episode is brought to you by ODSC, the Open Data Science Conference. Interested in sponsoring a SuperDataScience Podcast episode? Email natalie@superdatascience.com for sponsorship information.

In this episode you will learn:

  • (05:57) All about the TabPFN architecture
  • (21:27) Use cases for Bayesian inference
  • (35:07) On getting published in Nature
  • (44:03) How TabPFN handles time series data
  • (51:52) All about Prior Labs

Additional materials: www.superdatascience.com/863

  continue reading

976 פרקים

ทุกตอน

×
 
Loading …

ברוכים הבאים אל Player FM!

Player FM סורק את האינטרנט עבור פודקאסטים באיכות גבוהה בשבילכם כדי שתהנו מהם כרגע. זה יישום הפודקאסט הטוב ביותר והוא עובד על אנדרואיד, iPhone ואינטרנט. הירשמו לסנכרון מנויים במכשירים שונים.

 

מדריך עזר מהיר

האזן לתוכנית הזו בזמן שאתה חוקר
הפעלה