Artwork

תוכן מסופק על ידי Ben Lorica. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Ben Lorica או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.
Player FM - אפליקציית פודקאסט
התחל במצב לא מקוון עם האפליקציה Player FM !

Financial Time Series Forecasting with Deep Learning

37:10
 
שתפו
 

Manage episode 481575919 series 2570898
תוכן מסופק על ידי Ben Lorica. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Ben Lorica או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.

Subscribe: iTunes, Android, Spotify, Stitcher, Google, and RSS.

In this episode of the Data Exchange I speak with Murat Özbayoğlu, Chair of Artificial Intelligence Engineering at TOBB University of Economics and Technology in Ankara, Turkey. I wanted Murat on to discuss two survey papers he and his colleagues wrote on the use of deep learning in finance.
I’ve long been fascinated with finance and trading. My first job after I left academia was as the lead quant in a hedge fund, and ever since, I’ve tried to stay abreast of what tools and techniques quants and data scientists in finance are using. Forecasting in this setting usually means price prediction or price movement (trend) prediction. Output of forecasting models are used to inform investment decisions. What makes finance particularly challenging is that many people are using the same underlying data (time series of prices/values), and thus as Murat notes, many firms use alternative data sources (such as text) as potential sources of additional signal.
Download the 2020 NLP Survey Report and learn how companies are using and implementing natural language technologies.
Detailed show notes can be found on The Data Exchange web site.
Subscribe to The Gradient Flow Newsletter.

  continue reading

307 פרקים

Artwork
iconשתפו
 
Manage episode 481575919 series 2570898
תוכן מסופק על ידי Ben Lorica. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Ben Lorica או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.

Subscribe: iTunes, Android, Spotify, Stitcher, Google, and RSS.

In this episode of the Data Exchange I speak with Murat Özbayoğlu, Chair of Artificial Intelligence Engineering at TOBB University of Economics and Technology in Ankara, Turkey. I wanted Murat on to discuss two survey papers he and his colleagues wrote on the use of deep learning in finance.
I’ve long been fascinated with finance and trading. My first job after I left academia was as the lead quant in a hedge fund, and ever since, I’ve tried to stay abreast of what tools and techniques quants and data scientists in finance are using. Forecasting in this setting usually means price prediction or price movement (trend) prediction. Output of forecasting models are used to inform investment decisions. What makes finance particularly challenging is that many people are using the same underlying data (time series of prices/values), and thus as Murat notes, many firms use alternative data sources (such as text) as potential sources of additional signal.
Download the 2020 NLP Survey Report and learn how companies are using and implementing natural language technologies.
Detailed show notes can be found on The Data Exchange web site.
Subscribe to The Gradient Flow Newsletter.

  continue reading

307 פרקים

כל הפרקים

×
 
Loading …

ברוכים הבאים אל Player FM!

Player FM סורק את האינטרנט עבור פודקאסטים באיכות גבוהה בשבילכם כדי שתהנו מהם כרגע. זה יישום הפודקאסט הטוב ביותר והוא עובד על אנדרואיד, iPhone ואינטרנט. הירשמו לסנכרון מנויים במכשירים שונים.

 

מדריך עזר מהיר

האזן לתוכנית הזו בזמן שאתה חוקר
הפעלה