Artwork

תוכן מסופק על ידי Ben Lorica. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Ben Lorica או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.
Player FM - אפליקציית פודקאסט
התחל במצב לא מקוון עם האפליקציה Player FM !

Scalable Machine Learning, Scalable Python, For Everyone

35:45
 
שתפו
 

Manage episode 254041650 series 2570898
תוכן מסופק על ידי Ben Lorica. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Ben Lorica או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.

In this episode of the Data Exchange I speak with Dean Wampler, Head of Developer Relations at Anyscale, the startup founded by the creators of Ray. Ray is a distributed execution framework that makes it easy to scale machine learning and Python applications. It has a very simple API and as someone who uses both Python and machine learning, Ray has been a wonderful addition to my toolbox. Dean has long been one of my favorite architects, speakers and teachers, and we have known each other since the early days of Apache Spark. He has authored numerous books and is known for his interest in Scala and programming languages, as well as in software architecture.
Our conversation spanned many topics, including:

  • What is Ray and why should someone consider using it?
  • The first Ray Summit (May 27-28 in San Francisco)
  • Dean’s first impressions of Ray, and his journey from Scala to Python.
  • An update on Ray’s core libraries, Ray on Windows, and distributed training with Ray.

Detailed show notes can be found on The Data Exchange web site.
For more on Ray and scalable machine learning & Python, come hear from Dean Wampler, Michael Jordan, Ion Stoica, Manuela Veloso, Wes McKinney and many other leading developers and researchers at the first Ray Summit in San Francisco (May 27-28).

  continue reading

293 פרקים

Artwork
iconשתפו
 
Manage episode 254041650 series 2570898
תוכן מסופק על ידי Ben Lorica. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Ben Lorica או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.

In this episode of the Data Exchange I speak with Dean Wampler, Head of Developer Relations at Anyscale, the startup founded by the creators of Ray. Ray is a distributed execution framework that makes it easy to scale machine learning and Python applications. It has a very simple API and as someone who uses both Python and machine learning, Ray has been a wonderful addition to my toolbox. Dean has long been one of my favorite architects, speakers and teachers, and we have known each other since the early days of Apache Spark. He has authored numerous books and is known for his interest in Scala and programming languages, as well as in software architecture.
Our conversation spanned many topics, including:

  • What is Ray and why should someone consider using it?
  • The first Ray Summit (May 27-28 in San Francisco)
  • Dean’s first impressions of Ray, and his journey from Scala to Python.
  • An update on Ray’s core libraries, Ray on Windows, and distributed training with Ray.

Detailed show notes can be found on The Data Exchange web site.
For more on Ray and scalable machine learning & Python, come hear from Dean Wampler, Michael Jordan, Ion Stoica, Manuela Veloso, Wes McKinney and many other leading developers and researchers at the first Ray Summit in San Francisco (May 27-28).

  continue reading

293 פרקים

כל הפרקים

×
 
Loading …

ברוכים הבאים אל Player FM!

Player FM סורק את האינטרנט עבור פודקאסטים באיכות גבוהה בשבילכם כדי שתהנו מהם כרגע. זה יישום הפודקאסט הטוב ביותר והוא עובד על אנדרואיד, iPhone ואינטרנט. הירשמו לסנכרון מנויים במכשירים שונים.

 

מדריך עזר מהיר

האזן לתוכנית הזו בזמן שאתה חוקר
הפעלה