Artwork

תוכן מסופק על ידי The Data Flowcast. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי The Data Flowcast או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.
Player FM - אפליקציית פודקאסט
התחל במצב לא מקוון עם האפליקציה Player FM !

Building Scalable ML Infrastructure at Outerbounds with Savin Goyal

36:46
 
שתפו
 

Manage episode 471109690 series 2053958
תוכן מסופק על ידי The Data Flowcast. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי The Data Flowcast או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.

Machine learning is changing fast, and companies need better tools to handle AI workloads. The right infrastructure helps data scientists focus on solving problems instead of managing complex systems. In this episode, we talk with Savin Goyal, Co-Founder and CTO at Outerbounds, about building ML infrastructure, how orchestration makes workflows easier and how Metaflow and Airflow work together to simplify data science.

Key Takeaways:

(02:02) Savin spent years building AI and ML infrastructure, including at Netflix.

(04:05) ML engineering was not a defined role a decade ago.

(08:17) Modernizing AI and ML requires balancing new tools with existing strengths.

(10:28) ML workloads can be long-running or require heavy computation.

(15:29) Different teams at Netflix used multiple orchestration systems for specific needs.

(20:10) Stable APIs prevent rework and keep projects moving.

(21:07) Metaflow simplifies ML workflows by optimizing data and compute interactions.

(25:53) Limited local computing power makes running ML workloads challenging.

(27:43) Airflow UI monitors pipelines, while Metaflow UI gives ML insights.

(33:13) The most successful data professionals focus on business impact, not just technology.

Resources Mentioned:

Savin Goyal -

https://www.linkedin.com/in/savingoyal/

Outerbounds -

https://www.linkedin.com/company/outerbounds/

Apache Airflow -

https://airflow.apache.org/

Metaflow -

https://metaflow.org/

Netflix’s Maestro Orchestration System -

https://netflixtechblog.com/maestro-netflixs-workflow-orchestrator-ee13a06f9c78?gi=8e6a067a92e9#:~:text=Maestro%20is%20a%20fully%20managed,data%20between%20different%20storages%2C%20etc.

TensorFlow -

https://www.tensorflow.org/

PyTorch -

https://pytorch.org/

Thanks for listening to “The Data Flowcast: Mastering Airflow for Data Engineering & AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

56 פרקים

Artwork
iconשתפו
 
Manage episode 471109690 series 2053958
תוכן מסופק על ידי The Data Flowcast. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי The Data Flowcast או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.

Machine learning is changing fast, and companies need better tools to handle AI workloads. The right infrastructure helps data scientists focus on solving problems instead of managing complex systems. In this episode, we talk with Savin Goyal, Co-Founder and CTO at Outerbounds, about building ML infrastructure, how orchestration makes workflows easier and how Metaflow and Airflow work together to simplify data science.

Key Takeaways:

(02:02) Savin spent years building AI and ML infrastructure, including at Netflix.

(04:05) ML engineering was not a defined role a decade ago.

(08:17) Modernizing AI and ML requires balancing new tools with existing strengths.

(10:28) ML workloads can be long-running or require heavy computation.

(15:29) Different teams at Netflix used multiple orchestration systems for specific needs.

(20:10) Stable APIs prevent rework and keep projects moving.

(21:07) Metaflow simplifies ML workflows by optimizing data and compute interactions.

(25:53) Limited local computing power makes running ML workloads challenging.

(27:43) Airflow UI monitors pipelines, while Metaflow UI gives ML insights.

(33:13) The most successful data professionals focus on business impact, not just technology.

Resources Mentioned:

Savin Goyal -

https://www.linkedin.com/in/savingoyal/

Outerbounds -

https://www.linkedin.com/company/outerbounds/

Apache Airflow -

https://airflow.apache.org/

Metaflow -

https://metaflow.org/

Netflix’s Maestro Orchestration System -

https://netflixtechblog.com/maestro-netflixs-workflow-orchestrator-ee13a06f9c78?gi=8e6a067a92e9#:~:text=Maestro%20is%20a%20fully%20managed,data%20between%20different%20storages%2C%20etc.

TensorFlow -

https://www.tensorflow.org/

PyTorch -

https://pytorch.org/

Thanks for listening to “The Data Flowcast: Mastering Airflow for Data Engineering & AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

56 פרקים

All episodes

×
 
Loading …

ברוכים הבאים אל Player FM!

Player FM סורק את האינטרנט עבור פודקאסטים באיכות גבוהה בשבילכם כדי שתהנו מהם כרגע. זה יישום הפודקאסט הטוב ביותר והוא עובד על אנדרואיד, iPhone ואינטרנט. הירשמו לסנכרון מנויים במכשירים שונים.

 

מדריך עזר מהיר

האזן לתוכנית הזו בזמן שאתה חוקר
הפעלה