Artwork

תוכן מסופק על ידי The Data Flowcast. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי The Data Flowcast או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.
Player FM - אפליקציית פודקאסט
התחל במצב לא מקוון עם האפליקציה Player FM !

Customizing Airflow for Complex Data Environments at Stripe with Nick Bilozerov and Sharadh Krishnamurthy

27:40
 
שתפו
 

Manage episode 469918139 series 2053958
תוכן מסופק על ידי The Data Flowcast. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי The Data Flowcast או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.

Keeping data pipelines reliable at scale requires more than just the right tools — it demands constant innovation. In this episode, Nick Bilozerov, Senior Data Engineer at Stripe, and Sharadh Krishnamurthy, Engineering Manager at Stripe, discuss how Stripe customizes Airflow for its needs, the evolution of its data orchestration framework and the transition to Airflow 2. They also share insights on scaling data workflows while maintaining performance, reliability and developer experience.

Key Takeaways:

(02:04) Stripe’s mission is to grow the GDP of the internet by supporting businesses with payments and data.

(05:08) 80% of Stripe engineers use data orchestration, making scalability critical.

(06:06) Airflow powers business reports, regulatory needs and ML workflows.

(08:02) Custom task frameworks improve dependencies and validation.

(08:50) "User scope mode" enables local testing without production impact.

(10:39) Migrating to Airflow 2 improves isolation, safety and scalability.

(16:40) Monolithic DAGs caused database issues, prompting a service-based shift.

(19:24) Frequent Airflow upgrades ensure stability and access to new features.

(21:38) DAG versioning and backfill improvements enhance developer experience.

(23:38) Greater UI customization would offer more flexibility.

Resources Mentioned:

Nick Bilozerov -

https://www.linkedin.com/in/nick-bilozerov/

Sharadh Krishnamurthy -

https://www.linkedin.com/in/sharadhk/

Apache Airflow -

https://airflow.apache.org/

Stripe | LinkedIn -

https://www.linkedin.com/company/stripe/

Stripe | Website -

https://stripe.com/

Thanks for listening to “The Data Flowcast: Mastering Airflow for Data Engineering & AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

56 פרקים

Artwork
iconשתפו
 
Manage episode 469918139 series 2053958
תוכן מסופק על ידי The Data Flowcast. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי The Data Flowcast או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.

Keeping data pipelines reliable at scale requires more than just the right tools — it demands constant innovation. In this episode, Nick Bilozerov, Senior Data Engineer at Stripe, and Sharadh Krishnamurthy, Engineering Manager at Stripe, discuss how Stripe customizes Airflow for its needs, the evolution of its data orchestration framework and the transition to Airflow 2. They also share insights on scaling data workflows while maintaining performance, reliability and developer experience.

Key Takeaways:

(02:04) Stripe’s mission is to grow the GDP of the internet by supporting businesses with payments and data.

(05:08) 80% of Stripe engineers use data orchestration, making scalability critical.

(06:06) Airflow powers business reports, regulatory needs and ML workflows.

(08:02) Custom task frameworks improve dependencies and validation.

(08:50) "User scope mode" enables local testing without production impact.

(10:39) Migrating to Airflow 2 improves isolation, safety and scalability.

(16:40) Monolithic DAGs caused database issues, prompting a service-based shift.

(19:24) Frequent Airflow upgrades ensure stability and access to new features.

(21:38) DAG versioning and backfill improvements enhance developer experience.

(23:38) Greater UI customization would offer more flexibility.

Resources Mentioned:

Nick Bilozerov -

https://www.linkedin.com/in/nick-bilozerov/

Sharadh Krishnamurthy -

https://www.linkedin.com/in/sharadhk/

Apache Airflow -

https://airflow.apache.org/

Stripe | LinkedIn -

https://www.linkedin.com/company/stripe/

Stripe | Website -

https://stripe.com/

Thanks for listening to “The Data Flowcast: Mastering Airflow for Data Engineering & AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

56 פרקים

כל הפרקים

×
 
Loading …

ברוכים הבאים אל Player FM!

Player FM סורק את האינטרנט עבור פודקאסטים באיכות גבוהה בשבילכם כדי שתהנו מהם כרגע. זה יישום הפודקאסט הטוב ביותר והוא עובד על אנדרואיד, iPhone ואינטרנט. הירשמו לסנכרון מנויים במכשירים שונים.

 

מדריך עזר מהיר

האזן לתוכנית הזו בזמן שאתה חוקר
הפעלה