התחל במצב לא מקוון עם האפליקציה Player FM !
Why Your ‘Data Exhaust’ Is Your Most Valuable Asset
Manage episode 501622374 series 2574278
Rahul Auradkar, executive VP and GM at Salesforce, grew up in India with a deep passion for cricket, where his love for the game sparked an early interest in data. This fascination with statistics laid the foundation for his current work leading Salesforce’s Data Cloud and Einstein (Unified Data Services) team. Auradkar reflects on how structured data has evolved—from relational databases in enterprise applications to data warehouses, data lakes, and lakehouses. He explains how initial efforts focused on analyzing structured data, which later fed back into business processes.
Eventually, businesses realized that the byproducts of data—what he calls "data exhaust"—were themselves valuable. The rise of "old AI," or predictive AI, shifted perceptions, showing that data exhaust could define the application itself. As varied systems emerged with distinct protocols and SQL variants, data silos formed, trapping valuable insights. Auradkar emphasizes that the ongoing challenge is unifying these silos to enable seamless, meaningful business interactions—something Salesforce aims to solve with its Data Cloud and agentic AI platform.
Learn more from The New Stack about the evolution of structured data and agent AI:
How Enterprises and Startups Can Master AI With Smarter Data Practices
Enterprise AI Success Demands Real-Time Data Platforms
Join our community of newsletter subscribers to stay on top of the news and at the top of your game.
Hosted by Simplecast, an AdsWizz company. See pcm.adswizz.com for information about our collection and use of personal data for advertising.
304 פרקים
Manage episode 501622374 series 2574278
Rahul Auradkar, executive VP and GM at Salesforce, grew up in India with a deep passion for cricket, where his love for the game sparked an early interest in data. This fascination with statistics laid the foundation for his current work leading Salesforce’s Data Cloud and Einstein (Unified Data Services) team. Auradkar reflects on how structured data has evolved—from relational databases in enterprise applications to data warehouses, data lakes, and lakehouses. He explains how initial efforts focused on analyzing structured data, which later fed back into business processes.
Eventually, businesses realized that the byproducts of data—what he calls "data exhaust"—were themselves valuable. The rise of "old AI," or predictive AI, shifted perceptions, showing that data exhaust could define the application itself. As varied systems emerged with distinct protocols and SQL variants, data silos formed, trapping valuable insights. Auradkar emphasizes that the ongoing challenge is unifying these silos to enable seamless, meaningful business interactions—something Salesforce aims to solve with its Data Cloud and agentic AI platform.
Learn more from The New Stack about the evolution of structured data and agent AI:
How Enterprises and Startups Can Master AI With Smarter Data Practices
Enterprise AI Success Demands Real-Time Data Platforms
Join our community of newsletter subscribers to stay on top of the news and at the top of your game.
Hosted by Simplecast, an AdsWizz company. See pcm.adswizz.com for information about our collection and use of personal data for advertising.
304 פרקים
כל הפרקים
×ברוכים הבאים אל Player FM!
Player FM סורק את האינטרנט עבור פודקאסטים באיכות גבוהה בשבילכם כדי שתהנו מהם כרגע. זה יישום הפודקאסט הטוב ביותר והוא עובד על אנדרואיד, iPhone ואינטרנט. הירשמו לסנכרון מנויים במכשירים שונים.